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Abstract

A new "discrete elements" (L N) transport method is derived and

compared to the discrete ordinates SN method, theoretically and by

numerical experimentation. The discrete elements method is more accurate

"- than discrete ordinates and strongly ameliorates ray effects for the

practical problems studied. The discrete elements method is shown to be

more cost effective, in terms of execution time with comparable storage

to attain the same accuracy, for a one-dimensional test case using

linear characteristic spatial quadrature. In a two-dimensional test

case, a vacuum duct in a shield, LN is more consistently convergent

toward a Monte Carlo benchmark solution than SN, using step

characteristic spatial quadrature. An analysis of the interaction of

% angular and spatial quadrature in xy-geometry indicates the desirability

of using linear characteristic spatial quadrature with the LN method.

The discrete elements method is based on discretizing the Boltzmann

equation over a set of elements of angle. The zeroth and first angular

moments of the directional flux, over each element, are estimated by

•0 "numerical quadrature and yield a flux-weighted average streaming

direction for the element. (Data for this estimation are fluxes in fixed
C,.-

directions calculated as in SN'),.e s p a t i a l quadrature then propagates

the element flux in this "steered" direction. Since the quadrature

directions are not fixed, but are coupled to the fluxes, the method

strongly ameliorates ray effect. This is verified using the square-in-a-

square test case originated by Lathrop. A variety of spatial, angular,... ,

and element quadrature schemes are evaluated for both LN and SN . The

best discrete elements method uses a hybrid of Gauss-Christoffel polar

and composite 3-point Gauss-Legendre azimuthal quadrature.
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I. Introduction

The research reported here has developed a new numerical method for

solution of the Boltzmann neutral particle transport equation, the

method of discrete elements (L N), and tested its performance on problems

in one- and two-dimensional Cartesian coordinates. These problems have

been selected as a proof of concept.

A. Background

The Boltzmann equation, in the form of equation (I-1), is a balance

*equation for the flux of neutral particles at any point in seven-

*.. dimensional phase space. This flux, , is a function of particle

position (x,y,z), direction of particle motion (e,f), particle speed (v)

or energy (E), and time (t). For the monoenergetic, steady state, one-

-and two-dimensional problems considered in this research, the time and

energy dependences are suppressed, as are one (z) or two (y,z) of the

-4 spatial dependences.

Q- V +a i ca O+S (I-1)

where

a is the total cross-section for interaction (absorption or scatter)

a 8 is the scattering cross-sections

I-1
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c =a s aos t

is the direction of motion unit vector, (8, ) in spherical

coordinates, and

4' is the scalar flux, and is related to the (directionally dependent)

flux, *, by

(x,y,z) f i*(x,y,z,i) dS (1-2)
4n

Equation (1-1) represents the balance between loss rate (left side)

and gain rate (right side) which exists at each point of phase space

under steady state conditions. The first term on the left is the loss

rate of particles due to divergence, or spreading of the flux. The

second term is the loss rate due to interactions of the particles with

the medium, either absorption, which destroys the particle, or scatter,

which changes its direction of motion (and, more generally, energy,

although that dependence is suppressed here), removing the particle from

its original element of phase space. The first term on the right is the

gain rate due to particles which are present at the given space

location, but traveling in other directions, and which scatter, changing

to the given direction of motion. The final term is the gain rate due to

creation of new particles by any source mechanism, for example,

radioactive decay.

Actually, the (phase space) flux, 4, is usually of interest only in

so far as it is needed to obtain its zeroth angular moment, the scalar

flux, 4, or its first angular moment, the (vector) current, J. The

1-2
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scalar flux is of physical interest because it determines rates of

reactions, such as fission or neutron activation. The current is of

physical interest in determining the leakage rates of particles from one

region to another, through boundary surfaces.

Equation (I-1) is an integro-differential equation, solution of

which is particularly difficult. It is solved (except for very simple

cases) by numerical means, such as the method of discrete ordinates,

rather than analytically.

Since its development in the 1960's, the discrete ordinates S

method of numerical neutral particle transport has been a mainstay of

nuclear design. Its simple, iterative computational structure supports

computer solution of problems with large spatial grids and multiple

energy groups without prohibitive storage requirements. This is

accomplished by treating the spatial and angular integrations, or

quadratures, independently. Finite element methods which couple the

spatial and angular representations of the flux have the potential for

accurate solutions with coarse meshes, but are complicated and very

costly in storage.

Discrete ordinates methods have serious drawbacks, however. The use

of discretized angular and spatial representations inevitably entails

truncation errors. These often take the form of random errors which

limit the accuracy of the method, but when the truncation errors appear

systematically, they can cause results which are qualitatively

incorrect. Such systematic errors have been known as ray effects, since

the discrete ordinates method represents particle motion only in fixed

directions, or "rays". Another limitation of discrete ordinates is that

it provides poor accuracy for some types of problems which are important

1-3



in nuclear design. Streaming ducts in shields cause such difficulties

because the discrete ordinates angular representation is not well

adapted to a distribution of flux which is strongly peaked along the

axis of the duct. If the duct is not aligned along one of the quadrature

set directions, the discrete ordinates calculation may be very

insensitive to the presence of the duct. Monte Carlo methods can be used

in such cases, but are computationally costly. The performance of the SN

method is sensitive to the choice of the angular quadrature direction

set, in a problem-dependent way. One of the limitations of the method is

that when different quadrature sets give widely varying results, it is

difficult to have much confidence in any of them.

The discretized spatial representation can also lead to systematic

errors which result in qualitatively incorrect solutions, here called

"quasi-ray effect". Recent progress has been made in developing higher

order spatial quadrature schemes which reduce these truncation errors.

Various schemes have been proposed for improving the performance of

discrete ordinates calculations. Some of these are reviewed in the body

of this report.

B. Statement of the Problem

The objective of this research is to derive the discrete elements

equations, and to develop, implement, and evaluate the performance of

the discrete elements method. The method should use an improved angular

representation which couples angular and spatial quadrature in order to

reduce truncation errors and ray effects, while retaining the

computational simplicity of the SN method.

1-4
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C. Scope

The scope of the research includes development and demonstration of

the discrete elements method and analysis of its computational costs in

terms of computer storage and execution time. Its performance is

compared to discrete ordinates calculations with various quadrature

sets. The method is tested with various angular and spatial quadratures

and the optimum scheme identified. Two 1-dimensional and two

2-dimensional test problems are used. These test problems incorporate

the following assumptions:

- Geometries: 1-D and 2-D Cartesian

- Sources:

Uniformly distributed (by region)

Isotropic

- Media:

Uniform by region

Isotropic

Non-Multiplying

- Scatter: Isotropic (in Lab Frame)

- Energy Dependence: Monoenergetic (i.e. One Group)

-Time Dependence: Steady State

Since the discrete element method retains much of the computational

structure of discrete ordinates methods, the extension to multiple

energy groups, anisotropic scatter, and time dependent problems is

immediate and so need not be explicitly demonstrated here.

1-5



D. General Approach and Sequence of Presentation

The discrete elements equations are derived, in chapter II, by

discretizing the integro-differential form of the Boltzmann transport

equation over elements of solid angle. The computer algorithm for the

method is then developed as an extension of the discrete ordinates

algorithm. Angular quadrature sets for SN methods are reviewed in

chapter III, and corresponding quadrature grids for LN are proposed.

Three quadrature rules are considered in chapter IV. These are used

within each element of angle for coupling the angular and spatial

quadratures. Potential advantages and disadvantages of the three methods

are evaluated. Chapter V reviews the spatial quadrature schemes that are

to be used in the testing in later chapters. The review is conducted in

detail in order to support the later analysis of the performance of the

discrete elements method using these schemes. Smoothness, pointwise

accuracy, global accuracy, and tendencies toward systematic error are

considered. Having established the angular and spatial quadratures

available, the interaction of the two forms of quadrdture is

investigated in chapter VI. Formal definitions are given for ray effect

and quasi-ray effect, and examples of each are given. In evaluating the

performance of the LN method, it is important to be able to distinguish

between faults of the angular representation and quadrature and faults

of the spatial discretization and quadrature.

Since there are many possible combinations of quadrature schemes to

be employed as a discrete elements method, chapter VII defines a

notational system for identifying the different schemes, and discusses

the possibilities for optimization of the method. Chapter VIII then

analyses the computational costs of implementing these various schemes.

1-6



The discrete elements method was programmed and tested in both one-

and two-dimensional Cartesian geometry. Chapter IX presents an analysis

of the results for the one-dimensional problems: a pure absorber (no

scatter, no source) with an isotropic flux incident on one side; and a

highly scattering source region with a low scatter shield and vacuum

outer boundary. Chapter X treats two 2-dimensional problems: a square

source in a larger square absorber; and a shielded source with a vacuum

duct in the shield. Both chapters present the results of calculations

with various LN schemes, as well as with competing SN schemes, and,

in most cases, analytic or Monte Carlo benchmark solutions. The methods

are analyzed for accuracy, convergence, and cost-effectiveness. Causes

of the observed errors are also considered. Chapter XI summarizes the

conclusions drawn in the previous chapters and presents recommendations

for use of the discrete element method and for future research.

1-7
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II. Derivation of the Discrete Elements Transport Method

This chapter presents the derivation of a new method of

discretizing and solving the integro-differential form of the Boltzmann

neutral particle transport equation. The method has some features in

common with the discrete ordinates SN method, but differs from it in two

major ways. First, the Boltzmann equation is discretized over a

collection of elements of solid angle, rather than into a point-set of

fixed directions as in S . Second, the method of approximating and

solving the discrete element equations explicitly couples the angular

dependence of the directional flux into the spatial quadrature scheme,

so that the directions of streaming are interpolated to better represent

the motion of the particles in each angular element. A motivation for

this scheme is the anticipation that the steered streaming of the

discrete elements method should ameliorate the ray effects seen in theara

discrete ordinates method as a result of its fixed streaming directions.

A. Angular Coordinates and Elements of Angle

Three related angular coordinate systems are used here. These are:

1 - polar coordinates 18,1) where e is the polar angle,

measured from the z-axis, and * is the azimuthal angle, measured from

the x-axis toward the y-axis.

2 - polar cosine / azimuthal angle coordinates (t,*) where

.a T - COS ( ) and is the azimuthal angle, as above.

..

,... .. ... . . . . .. . . . - - . . . -. * ... . . . -. ., . . . . . . . :
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3 - direction cosine coordinates (p,Tl) where 11 is the

x-direction cosine and n is the y-direction cosine.

These coordinates are related by

T = cos (6) (II-i)

= sin () cos () = T 2 cos ( ) (11-2)

n - sin (8) sin () =V1-r sin (f) (11-3)

The transport equation will be discretized into a system of

equations, each describing the flux over an element of angle. These

elements of solid angle are like wedges or cones which together form the

unit sphere of solid angle. The angular mesh used here is similar to a

product quadrature set, and is formed by dividing the polar and

azimuthal coordinates, independently, into segments. This is perhaps

most easily visualized as a partitioning of the surface of a globe along

lines of latitude and of longitude. This partition maps as a rectangular

mesh on the (T,f) plane, where the weight of an element is proportional

to its area. The element weight can also be expressed as the product of

the T-weight and the f-weight:

W.. I sin (8) d8 d# / 2r = ATk 1 / 2Ir (11-4)"Wk'l Dk 1

m

where Dm is the domain of angle of the m'th discrete element and where

the normalization factor is 2 7r rather than 4 7r, since only the upper

4; hemisphere of directions need be considered (due to the z-symmetry of

xy-geometry). Except where explicitly needed, the indices, k and 1, will

be expressed as a single index, m, ranging from 1 to M.

11-2
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B. Discretization of the (Angular) Flux

In order to discretize the the transport equation, it is useful to

first treat the flux, * (xy,T,*). The flux may be considered as a union

of M functions, * M(T,f), each over a domain restricted to a single

angular mesh cell, Dm, of area W m . One reason for doing this is that

these functions could be approximated by a truncated power series

expansion. This representation of the flux as a piecewise polynomial is

similar to a finite elements method approach. Differences are (1) finite

elements typically uses basis elements which overlap in support and (2)

finite elements typically uses differentiability constraints, resulting

in coupling among the discretized equations, and thus requiring the

assembly of global matrices and solution of linear algebra problems. The

discrete elements method, however, uses basis elements that are discrete

in domain (non-overlapping) and does not require differentiability, or

even continuity, at the boundaries between elements, thus avoiding the

complications and computational difficulties of finite elements.

Each flux, * , can be characterized by its angular moments. The
M

zeroth and first moments are central to the discrete element method.

Notation for these flux moments is defined as follows:

F = (1W ) I (T,*) d i (11-5)

m

i = (1 W ) f f *(Ir,*) df. (11-6)

m
a.

where the directional unit vector, n, is defined as

I -i +lJ+Tk (11-7)
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Fm may be physically interpreted as the average flux of particles

traveling in directions which fall within the m'th element of solid

*, angle. Similarly, the vector quantity, 9f (n), is a (directionally

dependent) current. It bears the same relationship to the (scalar)

current vector, J, of diffusion theory as does the (directional) flux of

transport theory to the (scalar) flux of diffusion theory. Thus, J is
-m

the average current vector for the m'th element of solid angle.

C. Discretization of the Transport Equation

The transport equation is usually written in the form

0070+0 - C0+-8)

where c - a / t  and 9 is the scalar flux. Since the current is

physically meaningful, as discussed in the previous section, the first

step in the discretization is to bring the unit direction vector back

inside the divergence operator:

v. (n") + a - caO+S (11-9)

In order to discretize this transport equation, it is averaged over

each element of solid angle. More precisely, the zeroth angular moment

of the equation is taken, over the domain Dm , and normalized by the

weight, W •m4

1 (II-10)
il- D 7- /AJ.)dAL 1d -a dfCT+S

a m m

11-4
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Since the spatial divergence and angular moment operators apply to

independent variables, the divergence operator may be taken outside the

integral. Recalling the definitions of Fm and Jm, the result is

Vo J + O F =ca 0 + S (II-ll)- n m

*.

Two simplified forms of this equation are convenient. In a vacuum, it

reduces to

V9 J = S (11-12)

and otherwise, since the cross-section is non-zero, it may be written

1-V J + F = Q (11-13), o' -M m

'S where Q is the effective source term, with dimensions of flux, defined

as
S. S

cO + - (11-14)i0

The scalar flux is eliminated from this system of equations by

expressing it in terms of the F :

*- d5a W L F (11-15)

,E m

.4

'4w m

-, Thus

SQ " + c Wm Fm (I-16)
dII m

S. 11-5
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Equations (11-16) and (11-13), or (11-12) in vacuum, are the

discrete elements equations. These equations are exact, which is to say

* that no approximations -have been made yet. If they were solved

analytically, the exact scalar flux and current would be obtained,

although the directional flux, *, would not be fully specified.

Approximations to the second or higher angular flux moments could be

devised, but the first moment is determined exactly by

J =,.: W J (11-17)
m

Although equation (11-16) assumes isotropic scatter, equation (11-17)

could be used to include linearly anisotropic scatter in a

straightforward manner. For simplicity in implementing and evaluating

the discrete elements method, isotropic scatter is assumed.

. D. The Flux-Weighted Mean Angle

The discrete elements equations appear very much like the discrete

ordinates equations. In fact, if an assumption were made that the

discrete fluxes and currents were related by J -8 F where the

direction (or "ordinate"), 4 mi is a fixed direction established by the

choice of angular quadrature set, then the discrete elements equations

* would reduce to the discrete ordinates equations. Without this

assumption, the relationship of J and F defines the element mean-m m

streaming direction to be

m- J / F (11-18)

11-6
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Substituting equations (11-5) and (11-6), and canceling the weights, Wm ,

." )D

.- = m (11-19)
m

f ( ) df
D
m

The components of fm are designated by em, *m' lmp no ' and Tm

Equation (11-19) shows Ql to be the element flux-weighted mean angle. If

these angles were somehow known, then the well-developed techniques for

solving the discrete ordinates equations could be used to solve the

discrete elements equations. Numerical methods of approximating the m

are considered next.

E. Approximating the Flux-Weighted Streaming Directions

The flux-weighted mean angles, fl, are approximated by using

numerical quadrature rules to approximate the integrals in

equation (11-19). Separation of variables in (T,$ ) coordinates is

assumed within each discrete element, and the integrals in the two

coordinates are done independently. Thus, for each element, there is a

flux-weighted mean Tm, and a flux-weighted mean m
,in

f T*(T) dT
D

m m (11-20)
f *(€) dT
D
nm

f *Vp() df
D

#m in d (11-21)

11-7
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These one-dimensional integrals are then approximated by a

quadrature rule, e.g. Simpson's rule. The application of Simpson's rule

requires knowledge of the flux in three fixed directions distributed in

azimuth and three fixed directions distributed polarly, within each

element. Figure II-1 shows these fixed "auxiliary" directions, labelled

as north, south, east, west, and center. This nomenclature is chosen to

be analogous to the sides of a rectangle of latitude and longitude on

the surface of a globe, eastward being increasing *, and northward being

increasing T.

North

West o Center East

I IO
South

Fig. II-1: Discrete Element Auxiliary Directions for Simpson's Rule

These directions are fixed by the choice of the discrete element

angular mesh and the choice of Simpson's rule. The flux in these fixed

directions therefore obeys the discrete ordinates transport equations

and may be calculated using conventional SN spatial quadrature. The

source term for these auxiliary calculations is the same Q as is used in

-the discrete elements equations. The algorithm for this method is

considered in the next section.

First, an alternative view of this approximation scheme is

considered. If the flux is expanded in a Taylor's series (in angle)

about the element center, (T0 , 0 ), it is expressed as a series in powers

of (Tt- 0) and (f-40). Retaining terms through quadratic, including the

%.



bilinear term, and performing the integrations in equation (11-19)

analytically, it may be shown that the bilinear term vanishes from both

integrals. (Thus, the assumption of separability is actually required

only if terms higher than quadratic are retained.) The use of Simpson's

rule is equivalent to finding a quadratic flux which equals the

calculated fluxes at the five auxiliary directions and exactly

evaluating the flux-weighted mean streaming direction for that flux.

F. The Discrete Elements Method Algorithm

*The discrete elements algorithm is based as closely as possible

upon that used in discrete ordinates. The essential feature of SN is the

R- separation of the angular and spatial quadratures in an iterative

• "scheme. The source term, Q, is assumed known (from the previous

iteration, or by a guess), and the spatial quadrature is performed as a

walk through a mesh of space cells, using the fixed directions of the

angular quadrature set. As the directional fluxes are found, they are

. folded into a new scalar flux at each point, thus performing the angular

quadrature to get an improved scalar flux. After the spatial walk is

completed, the source term, Q, is updated in preparation for the next

iteration. This scheme minimizes storage requirements so that real

engineering problems can be fit into the computer. The discrete elements

algorithm retains this structure, with its computational advantages, but

, adds the steps necessary to approximate the (no longer fixed) streaming

directions and use them in the spatial quadrature of the element fluxes,

F . Once the streaming direction is found, the spatial quadrature of Fm m

uses the same methods as in S

11-9
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The discrete elements iterative scheme is:

1. Perform space quadrature in fixed directions to get

auxiliary directional fluxes.

2. Perform angular quadrature within each element of angle to

obtain the steered
m

3. Perform space quadrature in the (adjusted) directions to

get discrete element ("main") directional fluxes.

4. Accumulate the (weighted) main fluxes to get the scalar

flux at each space cell.

5. Update the source term, Q, and return for next iteration,

if the results are not yet converged.

The actual algorithm combines steps 1 through 4 in order to

minimize storage requirements, as follows:

Repeat

For each angular element
For each space cell

1. Step the associated auxiliary fluxes
across the cell

2. Find the mean direction for the main flux

3. Step the main flux across the cell
4. Accumulate the contribution to the scalar

flux in the "new-flux" array
Next space cell

Next angular element

For each space cell

1. Test for convergence
2. Update the "old" scalar fluxes to the "new"
3. Re-evaluate the source, Q, for the cell

Next space cell

Until convergence criteria are met.

II-10
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G. Summary

The discrete elements equations and algorithm have been developed

in this chapter. The method is similar to a finite elements method in

that the flux is represented by piecewise polynomial functions. The

advantages of finite elements may be expected, specifically, better

performance for problems with strong local sources and absorbers, since

the resulting ill-behaved flux functions are better approximated by

the piecewise basis. Unlike the finite elements method, however, the

elements are discrete and are solved by an iterative spatial and angular

mesh walk rather than simultaneously with matrix algebra. In this

respect, the method retains the practicality of the discrete ordinates

method. Unlike SNF however, the spatial and angular quadratures are

explicitly coupled through the flux-weighted mean streaming angles. In

effect, this coupling steers the streaming in the average directions of

particle flow and should strongly ameliorate the ray effects caused by

using fixed streaming directions in SN -

Before the L' method can be implemented and evaluated by comparison
N

with SN, the details of the angular and spatial quadrature methods must

be filled in. Chapter III covers angular quadrature: choice of streaming

directions and weights in SN, and choice of angular mesh in LN. Chapter

IV covers the angular quadrature used within each element to evaluate

the mean streaming direction. Chapter V presents the spatial quadrature

methods used to step the fluxes across each spatial grid cell. Chapter

VI considers the interaction of the spatial and angular discretized

quadratures and the inherent deficiencies of discretization, such as ray

effect.

1I-1l
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III. Angular Quadrature in the SN and L Methods

In the discrete ordinates method, a quadrature set is a set of

directions, am" and weights, W, used to approximate angular integration

by the following quadrature rule:

" f f(f) dh .W f (111-)i
e  

m

D •m

where f( ) is any function, for example, *. If equation (III-1) is exact

for f(n) = In, then the quadrature set is said to match the n'th

-' angular moment (with respect to the x-axis, in this case). This chapter

reviews some of the quadrature sets proposed or in use for S N, and

defines quadrature sets for use in one- and two-dimensional (slab and

xy) geometry with the LN method.

A. Global Basis Functions and Gaussian Quadrature

SN conventionally uses quadrature sets which match as many angular

moments of the integrand as possible. (Various symmetry constraints are

usually imposed, as well.) If the integrand is well-behaved, in that it

has high orders of differentiability, then it can be expanded in a power

series in the.direction cosines. The quadrature set then integrates,

exactly (or nearly exactly), as many of the terms as possible. Gaussian

quadrature is an example in one dimension. This works well if the flux

is well represented by a truncated power series in the direction

cosines. An alternative approach is discussed next.

/
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B. Local Basis Functions and Composite Quadrature
LN models the flux with piecewise low order polynomials in one or

two angular coordinates, T and/or 4. These are integrated by low-order

methods such as Simpson's rule. The summation of the integrals over the

pieces constitutes a composite quadrature. If the integrand of a

composite integration is actually well-behaved, the composite

integration works well, although a Gaussian would be more cost

effective. But, if the integrand is ill-behaved (in that its low-order

*s derivatives are small but its high-order derivatives are large or

unbounded), the composite rule improves in accuracy as more subintervals

are used, while Gaussian quadrature may become less accurate as more

points are used.

C. Behavior of the Directional Flux in Heterogeneous Problems

A difficulty encountered in transport problems is that the flux, as

a function of angle, can be rapidly varying (nearly discontinuous), and

that the discontinuities can exist at angles that are not necessarily

parallel to material interfaces. As an example, consider the flat

control rod in an otherwise homogeneous reactor shown in figure III-1.

Suppose that for some energy group, the neutron mean free path is large
V.

compared to the width of the control rod, but that the rod is strongly

absorbing. Then the flux at point "A" is fairly uniform, except in those

directions for which particles would have to have penetrated the rod. In

these directions, the flux is depressed. The flux is rapidly varying

with azimuthal angle for the direction coming from the edge of the

control rod. Because of this type of ill behavior, composite angular

quadrature may outperform global quadrature in those kinds of problems

111-2
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where transport methods are most needed. Some global quadrature sets are

more successful in handling this difficulty than others. Some of these

quadrature sets will be covered next.

Strong Flux

Toward 'A'

Homogeneous .
Fuel-Moderator
Region Point 'A'

Weak Flux

Toward 'A'

Control Rod

Fig. III-1: Example Problem: Homogeneous Reactor with Control Rod

D. Totally Symmetric Quadrature Sets (S N ) and Related Types

Lathrop and Carlson developed a family of quadrature sets which

meet various symmetry constraints and use the remaining degrees of

freedom to match angular moments. [Ref. 9 is perhaps the most useful of

many available references on the subject.] The most popular of these is

the totally symmetric quadrature sets. These are the sets implied if the

term "S " is used without qualification as to quadrature set. They
N

provide symmetry under interchange of any pair of axes, under 90-degree

rotation about any of the three (x, y, and z) axes, and under reflection

through any cardinal (xy, yz, zx) plane. These constraints ensure that

the results computed for a problem will not depend on the choice of

assignment of axis labels, clearly a physically desirable property.

111-3



However, these symmetries are of more importance in three dimensional

transport than in the two dimensional cases of concern here. The

interchangeability of the x and z axes, for example, is a waste of

degrees of freedom that could better have been used matching moments,

for example. Lathrop [Ref. 81 has shown that the totally symmetric

quadratures are very prone to ray effect, and has proposed a

rotationally symmetric quadrature which reduces ray effect. This set is

discussed below, along with other product quadratures.

E. Product Quadrature Sets

Product quadrature sets are formed as the product of independent

quadrature sets in T and 4, such that (T with weight
k,l kl w

W = W W I and with k ranging from 1 to K and 1 from 1 to L.
k,l k *

Product quadratures of this type are particularly appropriate for use in

two dimensional (xy) geometry, since they relax the x,z and y,z

interchange symmetries, but (usually) retain the x,y interchange

symmetry, as discussed above. The example in figure IIl-1 showed that

the flux can be ill-behaved in azimuth. However, variations in polar

angle (for any fixed azimuthal direction) result only in smooth

variations in flux due to the z-symmetry of these problems. In a sense

then, the polar quadrature is an easier problem than the azimuthal

quadrature. Product quadrature sets allow the apportionment of more

computational effort to the latter and less to the former. Some specific

product quadratures are described below.

.-.. * The set is usually only specified for the principal octant, where all
*'.".three direction cosines are positive. The other octants are defined by

reflections of the principle octant. Since only the T >0 hemisphere is
used in xy-geometry, the total number of directions in the product
quadrature set is 4KL.

111-4
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1. Single Range Quadrature

Single range quadrature assumes continuity and

differentiability of the flux throughout the (T,f) plane and implicitly

represents the flux as a single polynomial in T, sin(*), and cos(f) over

the entire domain. Lathrop and Carlson developed product quadrature sets

using Gauss-Legendre quadrature for T in the range (-1,1) and Gauss-

Chebyshev quadrature in azimuth [Ref. 91. They reported improved

calculation of critical radii in cylindrical coordinates, compared to

conventional SN' However, this scheme is closely related to a PN type

flux representation, and shares its inability to exactly represent

vacuum boundary conditions. Yvonne's method, DP N' uses a double range

Gaussian quadrature (in one dimensional problems) to correct this
."

deficiency. In two dimensional discrete ordinates, the analogue to this

approach is the use of multiple range quadrature sets.

2. Multiple Range (S ) Quadrature
K, LQ

Recently, Abu-Shumays has developed a Gauss-Christoffel

quadrature in sin(e) over the range (0,I) (i.e. e in (0,7r/2)) [Ref. 2].

This is a double-range polar quadrature which takes advantage of the xy-

plane mirror symmetry of the problems considered here. He also developed

three forms of quadruple-range azimuthal quadrature, one of which

retains xy-interchange symmetry. This azimuthal quadrature is defined

for *in the range (0, 7r /2) and extended to the other quadrants by

reflection though the xz- and/or yz-plane. It can exactly represent

vacuum and material interface boundaries oriented parallel to these

5.. planes. The combined Gauss-Christoffel polar / symmetric quadruple-range

azimuthal quadrature has demonstrated excellent performance in reducing

ray effect.

V.

111-5
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Based on Abu-Shumays findings, discrete ordinates results obtained

with the combined Gauss-Christoffel / symmetric quadruple-range

quadrature are here assumed to be the best of the available Gaussian-

type SN results and are used for comparison with the LN results. The

notation used to designate this quadrature is SKG,LQ indicating K

latitude lines with Gauss-Christoffel spacing and weights, each with L

azimuthal points per quadrant with quadruple-range spacing and weights.

* 3. Rotationally Symmetric Azimuthal (SKGLR) Quadrature

Lathrop [Ref. 8] suggested the possibility of using product

quadrature with equally weighted directions equally spaced in azimuth.

Such a quadrature set is invariant under rotations about the z-axis by

angles which are multiples of the azimuthal spacing. For any choice of

L, this provides the maximum rotational symmetry. This quadrature

reduced ray effect compared to conventional sets. Not only does it

better model the rotational symmetry of the integro-differential

*. transport equation, as Lathrop observed, but it also has the advantages

of a local basis representation for ill-behaved fluxes. This latter

point is a consequence of the fact that the rotational quadrature set is

.equivalent to a composite quadrature using the midpoint rule. SN with

rotational quadrature is thus a degenerate case of the discrete elements

method where the element angular quadrature is performed by the midpoint

rule. The notation used to designate discrete ordinates with this

quadrature is S KG,LR' indicating K latitude lines with Gauss-Christoffel

spacing and weights, each with L azimuthal points per quadrant, equally

spaced and weighted.

111-6
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Lathrop abandoned the rotational quadrature sets with the

observations that they reduce but do not eliminate ray effect and that

they require more directions for the same number of latitudes than the

standard sets: "256 vs 144 for N = 16" [Ref. 8:258). This implicit

*assumption of the need for a square mesh is not really necessary,

however. It may be that only a few latitudes, with Gauss-Christoffel

quadrature, will provide accurate polar quadrature, allowing the use of

a relatively fine azimuthal mesh. From the data presented in reference

8, it appears that an S2G,8R solution (16 directions/octant) has less

ray effect than an S16 solution (36 directions/octant) at 44% of the

cost. An S3G,8R would improve the accuracy of polar quadrature, with

similar ray effect and still have only 67% of the cost. For this reason,

S results using the combined Gauss-Christoffel / rotationally symmetric
N

quadrature are used for comparison with LN results obtained with the

analogous quadrature.

F. Discrete Elements Composite Quadratures

The discrete elements method uses composite quadratures in which

the choice of a quadrature set entails the specification of the

arrangement and weights of the elements, subject to the constraint that

the set of elements tile the (T, ) plane. Both one-dimensional (slab)

and two dimensional (xy) test cases are used in evaluations of the

discrete elements method. The quadrature sets used are described below.

1. One-dimensional Equal Weight (L N ) Quadrature

In one space dimension (slab geometry), the angular

coordinates are oriented so that the problem is symmetric in azimuth.

Therefore, only polar quadrature need be considered. The simplest scheme

111-7
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is to divide the range of T (-I,+I) into N equal intervals, as is

usually done in composite numerical integration. The error bound for the

quadrature over each element is proportional to the width of the

interval (i.e. the element weight) raised to a power determined by the

V element quadrature rule. For example, with Simpson's rule the error is

5
proportional to W . Hence, using equal weights tends to minimize the sum

of the errors over the set of elements. Another advantage is discussed

in reference to diffusion limit considerations, below.

2. One-dimensional Gaussian Weight (L NGw ) Quadrature

A feature of the Gauss-Legendre.quadrature for one-dimensional

SN is that it. biases the placement of directions towards the poles,

i.e., forward and backward through the problem, and puts reduced

emphasis upon the equatorial (sideways) directions. A composite

quadrature set which uses elements unequal in size, such that the

element weights are those of the Gauss-Legendre ordinates, would retain

4 this feature. It may be conjectured that good resolution in the polar

fluxes is more important than for the equatorial fluxes, so that a

"Gauss-like" composite quadrature might prove more effective than an

equal weight composite quadrature. Gaussian weight composite quadrature

is used to test this conjecture.

3. Equal Weight Composite Product (L K,L ) Quadrature

For two-dimensional (xy) problems, the discrete elements

method, as derived in section III-C, uses composite product quadrature.

Although any collection of rectangular elements which tiles the (T,)

coordinate plane could be employed, a division into discrete elements of

equal area is most natural. The advantages of this quadrature are that

uniform weights minimize the sum of the error terms and that the set

.
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most nearly meets the diffusion limit criteria, as explained below. This

quadrature set also retains the advantage of rotational symmetry in

modeling the rotational symmetry of the Boltzmann transport equation and

could be used for three-dimensional problems.

G. Hybrid Gauss-Christoffel/Composite (L KG,L) Quadrature

In two-dimehsional problems, as observed above, the flux is well-

behaved with respect to T, but may be ill-behaved with respect to *.

Consequently, a hybrid quadrature scheme is proposed. This scheme uses

Gauss-Christoffel quadrature in the polar variation and equal weight

discrete elements for the azimuthal quadrature. The fixed latitudes of

the polar quadrature take advantage of the well-behaved character of the

flux to provide the accuracy of a high order global quadrature, while

the equal weight composite quadrature accommodates the potential ill-

behavior of the flux. This method provides the advantage of coupled

angular and spatial quadrature to steer the flux, but only in azimuth.

However, steering in azimuth should suffice to reduce ray effect. Since

". fewer auxiliary fluxes are required, none being needed for polar

steering, the method would be more cost effective than the L
K,L

quadrature, if it were at least as accurate.

H. Diffusion Limit Considerations

* Although numerical transport methods are needed for accurate flux

determinations where diffusion theory does not apply, it is desirable

that the numerical method produce the same result as diffusion theory

for problems where diffusion theory is valid. A numerical method which

does this is said to satisfy the diffusion limit.

111-9
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A discrete ordinates quadrature set which meets the criteria

enumerated below will satisfy the diffusion limit. This can be shown by

assuming that the flux is of the form 0 )= + J. Then, in the

*limit of small J, discrete quadrature with a quadrature set meeting

these constraints can be used in place of analytic quadrature in the

derivation of Fick's law or of the diffusion equation. The criteria are:

Wm  1 1 (111-2)
m

W m W 0 (111-3)
I?- m

,Z Wm = 0 (111-4)
m

Pm . m = 0 (111-5)
:'." m

Em 2 Wm = 1/3 (III-6)
, m

W1 m 2 = 1/3 (111-7)

The physics behind these constraints is of interest. Equation (111-2)

assures conservation in that the calculation of 0(hence of Q) will not

lose or invent particles. Equations (111-3) and (111-4) serve the same

purpose with respect to current. If the directional flux is isotropic,

for example, they ensure that the current components, J and J ,x y

respectively, are properly computed as zero. Equation (111-5) causes

cross product terms to vanish from the diffusion equation; the last two

constraints produce the factor of 1/3 in the diffusion coefficient.

" In the limit of isotropic flux, the flux-weighted element streaming

directions go to the element center directions and the discrete elements

.N" III-10
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method becomes equivalent to a discrete ordinates method with those

directions and weights as its quadrature set. The LKG,L becomes, in this

degenerate case, SKG,LR , for example. It is desirable for the discrete

element quadrature sets to meet the diffusion limit.

All the (xy-geometry) quadrature sets described in this chapter,

and used in this report, are constructed by specifying the set on the

primary octant and filling in the other octants by reflection.

Therefore, they have mirror symmetry through the yz-plane, which ensures

equation (111-4) is satisfied, and through the xz-plane, for equation

(111-3). Either of these two symmetries, alone, is sufficient to satisfy

the cross-product constraint, equation (111-5). The conservation

constraint is met by proper normalization of the weights. All of the

sets used here are symmetric about * = n/4 and so are invariant under

interchange of the x and y axes. Thus, if either of equations (111-6)

and (111-7) are met, then so is the other. The standard SN quadrature

sets, and the S sets (for K>l) satisfy enough moment conditions to
KG, LQ

ensure satisfying equations (111-6) and (111-7). These quadratures

satisfy the diffusion limit exactly.

An advantage of the Gauss-Christoffel polar quadrature (upon which

Abu-Shumays did not remark, in Ref. 2) is that it satisfies the

diffusion limit exactly, for K>l, when used with any azimuthal

quadrature with the symmetries described in the previous paragraph. This

is because, in equation (111-6), i1 2 = cos2 () sin 2 (8) and them

symmetry about 7r/4 allows the quadrature points to be arranged in pairs
with complementary azimuths. Then the identity sin 2 0) + cos2

causes the choices of azimuths and weights to drop out of equation (III-

6). As a result, the Gauss-Christoffel polar / rotationally symmetric

6 .
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azimuthal quadrature, S and the corresponding discrete elements
KG,LR

quadrature, LKG,L both satisfy the diffusion limit exactly.

The LK,L quadrature (considered as a fixed quadrature set) does not

meet the diffusion limit exactly. For the reasons given in the last

paragraph, the summation in equation (111-6) is independent of the

azimuthal points and depends only on the choice of K. It reduces to

(1/K) , sin 2 (ek) = (1/K) (1- 2 (111-8)
k k

where

Tk = (2k-l) / (2K) (111-9)

which can be solved to obtain

U Em W 1 (8K2 )  (111-10)
L'm = - [1 + / ]
m

In practice, equation (111-6) need not be met exactly, but the method

will perform poorly under some circumstances if the summation differs

from 1/3 significantly. In this case, the method converges rapidly to

1/3; for K as small as 2, the error is only about 3%, even if the

quadrature set is used with discrete ordinates. The composite quadrature

of the discrete elements method further reduces this error.

Consequently, for practical purposes, the diffusion limit is met.

Similar arguments can be made for the one-dimensional quadrature, LN,
1 2

for which the summation is given by - (1 - 1I/N ) Also, it can be
3

d shown that these equal weight schemes are closest to meeting the

diffusion limit, in that, if the weight of one element is increased and

that of another correspondingly decreased, the approximation to 1/3 is

less accurate.

111-12
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I. Summary

For xy-geometry, there are two natural choices of quadrature for

the discrete elements method. With steering of the streaming angles in

both polar and azimuthal coordinates, the equal weight product

quadrature, LK,L is used. With steering only in azimuth, the hybridtK.L

Gauss-Christoffel polar / equal weight (rotationally symmetric)

azimuthal product quadrature, LKG,L is used.

The performance of discrete ordinates is strongly dependent upon

the choice of quadrature set, and the optimum choice is problem

dependent. A meaningful performance comparison between discrete elements

and discrete ordinates requires comparison with several discrete

elements quadratures:

1 - Conventional (Totally Symmetric) S

This is often a sub-optimal performer, but the production

codes in current use are designed around this quadrature set, so that it

*is used by default. Product quadratures are awkward to use and

inefficiently implemented. DOT-4.3 is an example [Ref. 12]. In a

practical sense, SN is the standard of performance.

2 - Gauss-Christoffel / Rotationally Symmetric SKG,LR

This quadrature underlies the hybrid LKG, scheme.

Comparison of these two will determine, if the discrete elements method

works well, whether it works because of its underlying quadrature set or

because of its composite quadrature within each element.

3 - Equal Weight / Rotationally Symmetric SKE,LR

This quadrature underlies the L scheme and comparison
K,L

would have the same benefits as in the previous paragraph. However,

SLR is never as accurate as S while showing essentially the same
KELRKG, LR

111-13
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ray effects. These two SN methods have equal computational cost.

Therefore, comparison of L K,L with SKG,LR is reported here.

4 - Gauss-Christoffel / Quadruple Range SKGLQ

This is a special quadrature set, ideally adapted to the

test problems used here. Comparison with this quadrature is a demanding

test of the discrete elements method. It should be noted, however, that

such ideal discrete ordinates quadratures are not available for many

practical problems. For example, the presence of diagonally oriented

absorbers, material interfaces, or vacuum ducts would invalidate the

assumptions of the quadruple-range azimuthal quadrature but would not be

expected to degrade the performance of discrete elements.

All the quadrature schemes considered here meet, or very nearly

meet, the diffusion limit constraints, equations (111-2) through

111-14
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IV. Quadrature Rules for Discrete Element Flux Modelling

The previous chapter noted that there are many possible choices of

*-' quadrature sets for discrete ordinates. The corresponding freedom in the

discrete elements method is in the choice of quadrature rule within each

element. This quadrature rule determines several characteristics of the

flux model: whether it is piecewise continuous or discontinuous, the

order of polynomial used as the basis function within each element, and

the possible range of variation of the flux-weighted streaming

direction. Three quadrature rules were tested: Simpson's rule, three-

point Gauss-Legendre rule, and the Newton-Cotes (five-point) rule. This

chapter reviews the rules and their Taylor series error bounds and

considers their relative advantages and disadvantages. Table IV-l

provides the formulas for flux-weighted mean angle, optimized for

minimum computational operations. The parameter "s" in these formulas

represents T or *. The mean azimuth formulas are for use with LK,L and

LKG,L. Corresponding mean T formulas are used with LK,L and LN '

A. Simpson's Rule

Simpson's (three-point) rule is the lowest-order scheme considered.

A convenient form for use here is

a+h
f f(x) dx = h [f(a-h) + 4 f(a) + f(a+h)] / 3 (IV-l)
a-h

An error bound (Taylor series residual, R) for this approximation is

R - - 0.000347 (Ax)5 f(4 ) (x') (IV-2)

where Ax - 2h and x' is some point in (a-h,a+h).

IV-1
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With Simpson's rule, the directional flux is modelled by a
Scontinuous piecewise-quadratic polynomial. Continuity is accomplished

not by overlapping finite elements, but implicitly, through the use of

~If the actual flux is discontinuous, or nearly so, then the model will

,| be poor only in the element(s) in which the discontinuity (s) occur.

Discontinuities at the boundaries between (directional) octants are

~included in this model, since the auxiliary fluxes along octant

..5 boundaries are independently computed for each octant as part of the

- i spatial mesh walk. Consequently, vacuum boundaries parallel to principal

J planes can be modelled exactly by the discrete elements method,

[ regardless of the choice of quadrature rule.

..-. Advantages of Simpson's rule include:

- Mean streaming direction can vary over full range of the

€-' element. This could be valuable in problems with streaming ducts through

".% shields since particles could be modelled as streaming directly down the

duct, regardless of its orientation.

- Some auxiliary directions are on boundary between elements.

These can be used twice, if sufficient storage is available, reducing

J.! , computational cost of auxilia ry fluxes.

~~B. Three-Point Gauss-Legendre Rule

The Gauss-Legendre (three-point) rule is of higher order than

Simpson's rule, but has the same computational cost (assuming auxiliary

fluxes are not reused due to storage constraints). It is the only method

.- used here which models the flux as discontinuous piecewise polynomial. A

IV-
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convenient form for use here is

a+h
f f(x) dx - h [5 f(a-bh) + 8 f(a) + 5 f(a+bh)] / 9 (IV-3)
a-h

where the auxiliary flux offset factor is b = (3/5) 1/2

An error bound (Taylor series residual, R) for this approximation

is

R = - 4.96xi0- 7 (Ax)7 f6 (x') (IV-4)

where Ax = 2h and x' is some point in (a-h,a+h).

Advantages of the three-point Gauss-Legendre quadrature are:

Higher order on individual discrete elements with only4only

slightly higher cost (no more cost than Simpson's rule if boundary

auxiliary fluxes aren't reused due to memory constraints)

- Broad range of variation of mean angle, compared to two-

point Gauss-Legendre, but mean angle cannot reach the edge of the

element. This could interact well with spatial quadrature schemes since

they are inaccurate for very small )i or Ti.

- The underlying model is equivalent to a piecewise-

discontinuous, piecewise-quartic (fourth-order) polynomial fit to the

directional flux. In this model, if any discontinuities occur at (or

very near) to the boundary between elements, they may be modelled

accurately, which is a potential advantage. This provides a simple way

to optimize the method for problems where such discontinuities are*." .J*

anticipated to occur along a limited number of known directions.

(Examples: hexagonally shaped or diagonally oriented absorbers, sources,

or material interfaces in an otherwise rectangular system.)

IV-3
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C. Newton-Cotes Closed (Five-Point) Rule

The Newton-Cotes (five-point) rule is of the same order as the

Gauss-Legendre (three-point) rule, and the coefficients of the error

bounds are approximately equal. Newton-Cotes rule provides equivalent

accuracy, but at greater computational cost due to the increased number

of auxiliary fluxes needed. It is tested for use in the discrete

elements method because it provides continuity at the boundaries between

elements, unlike the Gauss-Legendre rule. A convenient form for use here

is

a+h
f f(x) dx = h [7 f(a-h) + 32 f(a-h/2) + 12 f(a)
a-h

+ 32 f(a+h/2) + 7 f(a+h)] / 45 (IV-5)

An error bound (Taylor series residual, R) for this approximation is

R = - 5.17xi0 - 7  (Ax)7 f(6 ) (x') (IV-6)

where Ax = 2h and x' is some point in (a-h,a+h).

The advantages are:

- Computational cost of using five auxiliary directions is

offset by the fact that two of them are on the element boundaries and

can be reused, as with the Simpson's rule.

Mean streaming direction can vary over the full range of the

discrete element, as with Simpson's rule, which could be beneficial in

duct streaming problems, for example

- The underlying model is a continuous piecewise-quartic fit

*" to the directional flux. The comments about the Simpson's rule model

apply here, as well.

* IV-4
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Simpson's Rule:

s> s0+h f(s 0+h) - f(s o-h)
<s> =s O + h 00(IV-7)

f(s0+h) + 4 f(s ) + f(s0-h)
0 0 0

where h As/2

Gauss-Legendre Three-Point Rule:

s= s + g f(s0 +g) - f(s0 -g) (IV-8)
f(s0+g) + 1.6 f(s0) + f(s -g)

where h = As/2

g = (3/5)1/2 h

Newton-Cotes Five-Point Rule:

f(s +h) - f(s -h) + c (f(s +h/2) - f(s0-h/2)]
<s> = s +h 0 0 0

0 f(s0+h) + f(s0-h) + c2 [f(s 0+h/2) + f(s -h/2)] + c3 f(s0

(IV-9)

where h = As/2

C= 16/7

C = 32/7

c 12/7

Table IV-l: Flux-Weighted Mean Angle Formulas

-IV-5 •.
.5.

-5i

.5i



'S D. Summary

The discrete element quadrature rule is used in computing the flux-

weighted mean streaming direction for the element. Its only effect on

the method is through this steering of particle streaming. Three

quadrature rules were selected for evaluation. Simpson's rule is low

order but computationally inexpensive and allows the streaming direction

to be steered anywhere within the element of angle. With the same

expense (three auxiliary flux calculations per element), Gauss-Legendre

provides higher order and the possible advantages of a piecewise

discontinuous, piecewise polynomial flux representation. Gauss-Legendre

restricts'the steering of the streaming angle to the center 77% of the

element range (in one angular dimension), which may limit its ability to

'I model a streaming duct, for example, but also avoids space quadrature in

directions nearly parallel to the sides of the space cell, for which

most space quadrature schemes have very poor accuracy. The Newton-Cotes

rule uses five auxiliary fluxes per element andso is more expensive to

compute. It uses a continuous, piecewise polynomial flux representation

and allows the streaming direction to be steered anywhere in the

element.

The above discussions of error bounds and accuracy all implicitly

assume that the auxiliary fluxe (f(s0), etc.) are exact. However, they

are calculated by numerical means, discrete ordinates spatial

quadrature. The errors in the data for the quadrature rules, as it were,

may well dominate their performance. The results of numerical

V experimentation are reported in later chapters. The spatial quadrature

methods employed here are discussed in the next chapter.

IV-6
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V. Spatial Quadrature Methods

The research reported in this dissertation is primarily concerned

with two-dimensional Cartesian (xy) geometry, although the special case

of one-dimensional Cartesian (slab) geometry is also considered. The

discrete element method uses the same spatial integration methods as the

discrete ordinates method; therefore, these spatial methods are reviewed

in this chapter.

4

4 A. One-Dimensional (Slab) Spatial Quadrature

Four methods of one-dimensional spatial quadrature were evaluated

in this study: step, diamond difference (with negative flux fixup), step

characteristic, and linear characteristic. Several recent papers have

concerned these methods. Alcouffe, et al. [Ref. 3], proposed the linear

characteristic (L.C.) method and reported excellent performance, in

comparison with other methods, based on numerical testing. Larsen and

Miller [Ref. 6] evaluated the convergence (vs. space cell size) of these

methods, as did Lee and Vaidyanathan [Ref. 11]. The concepts behind the

methods, their formulas, and some of their advantages and disadvantages

are summarized below.

1. Coordinates and Symbols

In the one-dimensional coordinate system, x is the space

coordinate; the angular coordinates are rotated (compared to xy

geometry) such that e is the angle with respect to x, and 11 is the x

V-1 2 . * *,



direction cosine ( p = cos(8)). For convenience in computer

implementation, let F. be the directional flux entering the space unitp in

cell of widthA x and F be that leaving. This convention allows the
out

yL use of the absolute value of P and requires that the program explicitly

-S keep track of whether F. represents Fleft and Fou t represents Fright

(for positive p, i.e., for right-bound particles) or vice versa (for

negative p, i.e., for left-bound particles). Using this scheme, the

spatial quadrature method need only consider positive directions.

Negative directions are handled as the reflection of positive ones. With

this notation, the transport equation to be solved is:

P dF/dx + a F =C Q (V-l)

where:

a = a total (V-2)

C = scatter a total (V-3)

Q=c + S/a (V-4)

The effective source parameter, Q, has dimensions of a directional flux,

and is physically significant as the value the flux asymptotically

approaches as p- 0. Defining Q in this way is computationally

convenient and efficient, as well as physically meaningful, and is

*" consistent with the usage in chapter II.

2. Balance Equation

The balance equation is a conservation relation among the

cell-edge and cell-average fluxes obtained by integrating equation (V-1)

across a space cell:

V-2
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p(F - )/Ax + OF = eQ (v-5)
out in c c W5

where F is the cell average flux and a Q is the cell average effective
c .c

source. (The subscript on Q will be omitted, except where necessary to

avoid ambiguity.) The cell optical thickness, C , is the parameter

defined as

C= A x /P. (V-6)

Using this parameter, the balance equation becomes

(Fou t - F ) / F = Q (V-7)ot in c

3. Conservation Considerations

Conservation of particles is assured if two conditions are

met. First, the spatial quadrature scheme must be based upon the (exact)

balance equation, regardless of any approximate auxiliary relations it

assumes. This condition ensures conservation of particles inside each

5spatial mesh cell. All the spatial quadratures used here meet this

condition. Secondly, particles must be conserved in crossing the

interfaces between cells. In the discrete ordinates method, this is

,S. achieved by using the flux out of one cell as the flux into the next

cell. More precisely, it is the component of current in the direction

normal to the face of the cell which must be carried unchanged across

the cell boundaries. In one dimension, this current is J = F In
x m m

the discrete ordinates method, the directions, m' are fixed so that

continuity of flux across the cell interfaces is sufficient.

V-3
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In the discrete elements method, this same logic applies to the

auxiliary fluxes, whose directions are fixed. However, the main fluxes

in the discrete element method use steered streaming directions which

are not fixed (which is the major objective of discrete elements).

Conservation is accomplished in the same two steps. Within each space

cell, the streaming angle for each element is assumed to be constant. It

* may have a different value after each iteration, but while the spatial

quadrature is performed, the flux-weighted streaming directions are

treated as fixed. This assures conservation within each space cell,
S.

since the explicitly conservative spatial quadrature methods are used,

.5 as in SN' Conservation across cell interfaces is achieved by explicitly

*using the normal current out of one cell as the normal current into the

*. next cell. Since the streaming directions are discontinuous across cell

interfaces, so are the fluxes, but in just such fashion as to maintain

continuity of the current. Consequently, there are two physically

*" meaningful results computed by the method, the cell-average fluxes and

the cell-boundary currents.

4. Step Method

The step method assumes that the flux is constant across each

space cell, with discontinuities at the inbound edges. This is

equivalent to assuming the auxiliary relation:

F F (V-8)
c out

This leads to a solution of the balance equation:

Fc = = Q C/ (1 +£ ) + Fn / 1 +£ ) (V-9)

V-4
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This solution has several computational advantages. The

coefficients of Q and F. are in the range (0,1) for all possible
in

optical thicknesses. Therefore, the numerical method which uses these

"- coefficients is stable and absolutely convergent. The method is

positive, in that, for any positive inputs (Q and F. in), the computed

fluxes are positive; hence, no negative flux "fixup" is required.

Positive methods also have the benefit of producing solutions which vary

smoothly from cell to cell across the space mesh. Finally, there are no

special cases, so that no if-tests are required. This combines with the

computational simplicity of equation (V-9) to make the method extremely

fast.

The disadvantage of this method is its poor accuracy, which

requires a prohibitively fine space mesh to provide usable results for

most purposes. Since the method is smooth and positive, it may be

adequate for computing the auxiliary fluxes used in steering the

streaming directions. For that application, only relative levels are

important, as is seen from the form of equations (11-20) and (11-21).

5. Diamond Difference

The diamond difference method assumes that the flux varies

linearly across the space cell. Thus, the cell-average flux is

approximated by the average of the cell-edge fluxes. This is equivalent

to the familiar "diamond difference" approximation for numerical

-. differentiation and gives the auxiliary relation:

F = (F + F.n) / 2 (V-10)

c out i
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This combines with the balance equation to give a solution:

Fout = Q 2 £/(2 + c) + F. (2 - e)/(2 + c) (V-II)

F is then computed directly from the auxiliary equation.

This method has several advantages. It is numerically stable and

absolutely convergent; the coefficients of F. and Q in the explicit
in

solution for F lie in the range (-l,+l), since the optical thickness isC

positive. As in the step method, the calculations are simple and no if-

tests are requited. This method is substantially more accurate than the

step method, and is easily generalized to curvilinear geometries, as

with cylindrical or spherical coordinates.

The diamond difference method, however, is not a positive method.

It may predict negative fluxes, which are not physically reasonable.

Relatively fine space meshes are needed to avoid negative fluxes. The

calculation of space-integral quantities, such as total absorption

rates, is insensitive to the presence of a few negative fluxes; but the

*. pointwise values, such as scalar flux as a function of position, tend to

be oscillatory and inaccurate. These inaccuracies impair its usefulness

for computing the auxiliary fluxes, but it may be adequate for the main

fluxes of the discrete elements method.

6. Negative Flux Fixup for the Diamond Difference Method

In order to avoid the (conceptually disconcerting) negative

fluxes, a fixup scheme is often employed. This is done by computing Fout

using the normal diamond difference equations, as shown above. If the

result is negative, however, it is (arbitrarily) set to zero. This new

auxiliary relation (F = 0) is substituted into the balance equation,
out

V-6
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which is then solved for F
C

F Q+ F. /C (V-12)
C in

The advantage of this scheme is that the pointwise fluxes are more

reasonable, while the space-integral values are nearly as accurate as

before, assuming the fixup is invoked only infrequently.

The disadvantage of the fixup is that the numerical method becomes

nonlinear and convergence is no longer assured. An oscillatory

instability can result wherein the fixup is required on one iteration,

but the fixed-up flux avoids the need for the fixup on the next

iteration, yet that un-fixed-up flux requires the fixup on the
.% .*o%

subsequent iteration, etc. This can happen if the fixup is required too

frequently, which is sometimes the case for realistic problems.

7. Considerations Regarding the Use of Fixups

There are two schools of thought regarding the use of negative

flux fixups. One viewpoint is that the fixup degrades integral values

and should not be used. Negative fluxes are seen as being merely

inaccurate numerical representations of the (correct) positive values.

Further, the presence of too many negative fluxes is considered an

indication of a need to refine the space mesh. The other viewpoint is

that negative flux fixups should be used since pointwise values are

improved, so long as integral values are not significantly altered by

the fixup. Changes in integral values are seen as an indication of the

* need to refine the space mesh. Since amelioration of ray effects is an

objective of this research, pointwise values are of importance, and the

latter point of view is taken here.

AV-7
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8. Step Characteristic Method

The step characteristic method is derived by assuming

streaming along the "characteristic lines" of the transport differential

equation, i.e., in direction The transport equation (V-l) is

-. integrated analytically, with the assumption that Q(x) is a constant,

* .4- Qc' across the space cell. This provides an auxiliary equation for F
c out'

F = e- F. + ( e-  Q (V-13)out in

The resulting value is then used in the balance equation to obtain

F = Q + (F. -F out (V-14).c in Fout)

An advantage of this method is its positivity, which avoids the

need for negative flux fixups. The method also avoids the point-to-point

oscillations of the diamond difference method. With both smoothness and

accuracy, the method should be applicable to both the auxiliary and main

fluxes of the discrete elements method.

The disadvantage of the method is the computational cost of

evaluating the exponential function. This cost can be minimized if the

coefficients are computed only once and stored in arrays, assuming

sufficient storage is available for this use,- or are computed only upon

changing material regions, being passed to the step characteristic

subroutine as a parameter.

It is interesting that (in this one-dimensional case, only) the

diamond difference method is equivalent to the step characteristic

method with the exponential approximated by (2-c)/(2+C). The leading

3
error term in this approximation is C /12.
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9. Linear Characteristic Method

The linear characteristic method is derived as was the step

characteristic method but with the improved approximation that the

effective source, Q(x), is assumed to vary linearly across the space

cell. In order to estimate this variation, it is necessary to

accumulate, in the outer iteration, not only the cell average effective

source, Qc' but also the edge values for each cell, Qin and Q out (Note

that Qout of one cell and Qin of the next cell are different if the

cross-sections are different.) Then Q(x) can be approximated by

)..

Q(x) = Qc + P (X-X c) /x (v-15)

where

P Q - Q (V-16)
out in

However, if PI > 2 Qc , then Q(x) will be negative at one end of the

cell. Therefore, a negative source fixup is used, which reduces the

slope of Q(x) so that it just reaches zero at the edge of the cell. This

is done by recomputing P (if IPJ > 2 Q c) as

P = 2 Q SIGN(Q out-Qin) (V-17)

The transport equation is integrated analytically to obtain Fou t in

terms of F. , Q, P, and the optical thickness, e:'% in

Fout = Fin e + Q (I - e ) + P [1 - (1/2 + l/e)(1 - e )1 (V-18)

This result is used in the balance equation to obtain F :c

Fc Q + F )/C (V-19)

(Fi out

V-9
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Alcouffe, et al., have reported that the advantage to this method

is that it is very much more accurate than the other methods considered.

Although it requires more storage and computation per cell, it provides

equivalent accuracy with a much coarser mesh, so that storage and

execution costs are both reduced for a given accuracy of results

(Ref. 3]. The disadvantage of somewhat more complicated programming is a

minor one. This method is appropriate to both the auxiliary and main

fluxes of the discrete element method.

,'.I B. Two-Dimensional (xy) Spatial Quadrature

Three methods of xy spatial quadrature are considered: step,

diamond difference (with negative flux fixup), and step characteristic.

Fine mesh spacing is used with these methods to obtain adequate

accuracy, rather than the higher order methods which have been presented

very recently. Conservation is achieved by the same means as in one

dimension, as described above.

1. Coordinates and Symbols

The two-dimensional space and angular coordinate systems used

to define the angular quadratures are used here for the spatial

quadratures. The unit space cell is shown in figure V-1. As in the one-

dimensional case, the direction cosines are all assumed positive and the

- .iother three octants are obtained by reflections. Due to the z-symmetry,

only the upper hemisphere of directions ( T > 0) need be considered. The

fluxes entering the cell are Finx and Finy and are the fluxes on the

left (x=xi and bottom (y=y 2 ) faces, respectively. Similarly,

F our' x and Fout'y are the fluxes on the right and top faces of the cell.

These fluxes are directional fluxes in a fixed quadrature direction, 9.

V-10



2. Balance Equation

Using the above notation, the transport equation becomes

. dF/dx + n dF/dy + a F = a (V-20)

where Q is defined by equation (V-4), as before. Integrating over the

area of the space cell yields the balance equation:

F. - / + (F F. = Q (V-21)
outx in,x outy in,y) c

where the optical thicknesses are

a= a A x /1 (V-22)

8 =aA y /1 (V-23)

and the cell-edge fluxes are averages over their respective cell faces,

F is the cell-average flux, and Q is the cell-average source term. The
c c

subscript on Q will be dropped except where required to avoid ambiguity.

3. Step Method

As in slab geometry, the step method in xy geometry assumes

auxiliary relations

F =F =F (V-24)
out-x outy c

This assumption reduces the balance equation to a single unknown. The

"" V-l11
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balance equation is solved to obtain

F = Q + (1/a) F. + (l/ F.
in,x in,y (V-25)

1 + (1/a) + (l/8)

The step method has the same advantages and disadvantages in two

dimensions as were described above for the one-dimensional case. Another

advantage is that it can be readily extended to curvilinear coordinates.

4. Diamond Difference

The diamond difference method assumes that the flux is linear

in both x and y over a space cell, so that the cell-average flux is

equal to the arithmetic average of the cell-edge fluxes on opposite

sides of the cell. As before, the cell-edge fluxes represent averages

over their respective face6 of the cell. This assumption leads to an

auxiliary relation for each dimension:

Fc = (F. +F ) /2 (V-26)c in, x Fout,x

F = (F. + F y) / 2 (V-27)c in,y out,y

These relations, together with the balance equation form an algebraic

system which is solved for F
,°,.x

F:':Q + F. (a- b -1/2) + F, 2b
Fo in,x in'y (V-28)

a + b + 1/2

* where, for computational efficiency, a = 1/a and b =1/

The remaining fluxes, Fc and Fout,y, are then evaluated using the

auxiliary relations.

V-12
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The diamond difference method provides good accuracy for global,

i.e. space-integrated, quantities, such as total absorption; but the

method is not positive and predicts negative fluxes if the space mesh is

too coarse. Lathrop has researched the issue of positivity versus

accuracy. He states that:

"A version of the variable weight scheme in which weights
depend not only on the space-angle mesh but also on particle
sources and fluxes is suggested as a means of obtaining the
highest accuracy consistent with a positive difference scheme,
but it is noted that such s-:hemes are computationally more
expensive than available 7orrective recipes used in
conjunction with nonpositive schemes." [Ref. 7:475]

The only variable weight scheme used here is the step characteristic

method. It will be discussed after the corrective recipes, which are

considered next.

5. Negative Flux Fixup for the Diamond Difference Method

The design and application of negative flux fixup in two

dimensions is similar to that used in one dimension, with the added

complications that one or the other or both of the cell-exiting fluxes

can be negative, so several special cases must be handled. The

algorithm, optimized for minimum if-tests and computer operations,

proceeds as follows:

1 - Compute F from equation (V-28)~out,x

2 - If Four,x is not negative, compute Fout,y from the diamond

difference relations:

SFo = F.n +F - F. (V-29)
outy inx Fout,x in,y

V-13
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"a -If F outy is not negative, compute Fc from either diamond

difference equation, which completes the calculations.

, b - If F outy is negative (but Fout x was not), then replace

the y diamond relation, equation (V-27), with the fixup F outy- 0

and solve the resulting system of equations for Foutx:

F Q + F. (a- 1/2) + F b Wv30)Fout, x = in,x in,y (-0

a + 1/2

If the revised F is not negative, compute F from the x diamond
ut. x c

relation, equation (V-26), which completes the calculations. If the

revised F is negative, then both outgoing fluxes require fixups.~o u t, x

This case is handled in step 4, below.

3 - If the (originally) calculated value of Fout X is negative,

then the x diamond relation is replaced by the fixup F = 0 and

the resulting system is solved for Fouty:

F Q + F a + F (b - 1/2)
Fouty inx iny - W-31)

b + 1/2

If F outy is not negative, then compute F from the y diamond relation,

equation (V-27), which completes the calculations. Otherwise, both

outgoing fluxes require fixups. This case is handled in step 4, next.

4 - Since both outgoing fluxes have been negative, despite

application of a fixup of one of them, the final alternative is to

e replace both diamond relations by fixup constraints: F 0 andoutx

F 0 and compute F directly from the balance equation:
outy c

F "Q + F. a + F b (V-32)
c in,x in,yb

~V-14
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6. Step Characteristic

The step characteristic method for xy-geometry was developed

by Lathrop and compared to several other positive schemes [Ref. 7].

Figure V-i illustrates a single space mesh unit cell, of dimensions Ax

by Ay, not necessarily square. The streaming direction is assumed to

lie in the principal octant, so that particles enter the cell from the

left and bottom and exit on the right and top.

.5' ~out'Y

ZF/

.5.1

/ Diag

y n~
X-11 Ax

Fig. V-1: Step Characteristic Unit Cell
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Rather than assume the auxiliary relations directly, as in the

previous methods, the step characteristic method uses analytic

integration, in the fixed single direction Q, to find the flux

-.% tnroughout the cell. The assumptions are:

1 - the source term, Q, is constant throughout the cell

-i 2 - the flux entering on the left, Finx, is a constant (with

respect to y) along the left face of the cell

3 - the flux entering on the bottom, F. , is a constant' . in,y

(with respect to x) along the bottom face of the cell.

The solution for the flux is analytic throughout the cell, except

that it is discontinuous across the corner characteristic line, which

extends from the lower left corner in direction * across the cell
(unless Fin,x = F iny). The required outputs of the method are the cell

average flux, Fc, and the exiting fluxes, F and F . The exitingSout,x out,y"

fluxes are obtained by analytically averaging the solution for the flux

along the right and top faces. This provides a formula for the outbound

fluxes in terms of the inbound fluxes, the source (Q), and the optical
i.4

thicknesses of the cell (a and B). The cell average flux, Fc, could be

found by analytically averaging the solution over the cell, but it is

computationally more efficient to find it directly from the balance

equation. The two approaches are algebraically equivalent, but not

necessarily numerically equivalent, due to rounding error. Using the

balance equation ensures that the method is numerically, as well as

P conceptually, conservative. The step characteristic method is a variable

weight method, in that there are different sets of formulas used

depending upon whether the corner characteristic line intersects the

". right face, the top face, or the top right corner of the cell.

V-16
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If the corner characteristic line intersects the right face of the

cell, as shown in figure V-i, then * < diag arctan(Ay/Ax). An

equivalent condition is that a <$ . In this case, the right cell-edge

flux depends on both inbound fluxes, but the top flux does not depend on

the bottom flux. The formulas are

Four'x = Q + (1- ab) e (F in,x-Q) + (1-e- ) b (F in,y-Q) (V-33)-at

F outy M Q + (1-e- ) a (F in,x-Q) (V-34)

where a = 1/a and b = 1/8 . If the corner characteristic line

intersects the top right corner, i.e. if O =0 , then the top flux

depends only on the left, and the right depends only on the bottom. The

formulas are

Fut = Q +(1-e- b (F. i -Q) (V-35)

-aFout,y = Q + (l-e )a (F. -Q) (V-36)out~yin,x

The remaining case is that a > 8, so that the formulas are

F Q + (l-e- ) b (F. -Q) (V-37)
out,x in,y"""-8 -

F Q (l-e a (F. -Q) + (1-8a) e-  (F. Q) (V-38)
out,y inx in,y

In each case, the cell average flux is given by

Fc Q + (Fin,x - F our) a + (Fin,y - F out) b (V-39)

V-17
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The step characteristic spatial quadrature is advantageous for use

in the discrete elements method for both the auxiliary and main fluxes.

It is unconditionally stable and convergent, as well as being a positive

method. These features provide the smooth results needed for the

auxiliary fluxes, but with much better accuracy than the step

quadrature. The step characteristic quadrature also has the accuracy

needed for the main fluxes. However, the accuracy of the method depends

upon the relation between the streaming azimuth and the cell shape. If

the streaming direction is at or near the cell diagonal, the method has

excellent accuracy, but it provides comparatively poor accuracy for

directions which are far from the diagonal. The nature of these

inaccuracies is considered in detail in the next chapter.

C. Summary

This chapter has reviewed the spatial quadrature methods used in

one- and two-dimensional discrete ordinates and for evaluation of the

discrete elements method. The step method is computationally

inexpensive, and is inaccurate but positive and smooth. The diamond

difference method is computationally moderately expensive and is

accurate in computing global quantities, such as total absorption rate,

but is less accurate for pointwise quantities, such as the scalar flux

as a function of position. This inaccuracy is because diamond difference

is not a positive method, and hence predicts negative fluxes (if the

4 space mesh is too coarse) or spatially oscillating fluxes, in any case.

The diamond difference method may be used with negative flux fixups,

which introduce nonlinearity into the method, and reduce accuracy of

global quantities, but which prevent negative fluxes and so improve the

V1~V-18
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calculation of pointwise quantities. The step characteristic method is

computationally relatively expensive because of the exponential function

it uses, but provides both smoothness and accuracy. In one dimension,

the linear characteristic method is also selected for testing. It is

higher order than the step characteristic and has improved accuracy,

* especially with relatively coarse spatial meshes.

Later chapters report the results of testing the discrete element

method with various combinations of methods of spatial quadrature used

for the auxiliary and main fluxes. In order to interpret these results,

*. it is necessary to consider the characteristics of the spatial

quadratures as well as those of the angular quadratures. This is the

reason for the detailed review presented here. The interaction of the

spatial and angular quadratures is similarly important, and is

considered in the next chapter.

'1

.4

.4
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VI. Interaction of Angular and Spatial Quadrature:

Ray Effects and Quasi-Ray Effects

The objective of this research is to develop and evaluate a method

of numerical neutron transport which handles difficult problems better

than discrete ordinates and which reduces ray effect. The discrete

elements method attempts this by coupling the angular and spatial

quadrature and by using a composite angular quadrature. In order to

accurately interpret the results of numerical testing, it is first

necessary to consider what sorts of errors are attributable to the

angular quadrature in SN and what sorts are due to the spatial

quadrature, and how the two interact. The purpose of this chapter is to

investigate these deficiencies and interactions. The approach is to

solve a simple problem, a square source in a square non-scattering

absorber, using combinations of analytic and discrete angular and

spatial quadrature.

". A. The Square-in-a-Square Problem: Without Scatter

Figure VI-I shows the test problem and a benchmark solution. The

problem is a 4 cm by 4 cm square absorber with an absorption cross-

section of 0.75 cm and scatter cross-section of zero, located in a

vacuum. A source of strength 1 n/cm 2/sec is distributed throughout the

central I cm by 1 cm subregion. Only the upper right quadrant of the

problem is actually solved. The rest of the problem is represented by

VI-l
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reflecting boundaries. Also shown is a benchmark solution for the y

component of scalar current, J y, along the top edge of the square. Thisry
solution used Monte Carlo spatial and azimuthal integration and 2-point

Gauss-Christoffel polar integration of a Green's function kernel. The

curve is obtained from 16 data points, each representing the average

current in an interval 1/8 cm in width.

This benchmark solution shows several qualitatively expected

features. The current is nowhere zero. The current is monotone

decreasing, as a function of x (along y = 2 cm). The current should have

zero slope with respect to x at x=0 (by symmetry), and the solution

approximates this feature. The slight lack of smoothness is due to the

variance of this Monte Carlo solution, which used 200,000 particles.

Jy(x,y=2)
(Graphed
at right)

-'Absorber .,

u .4

1

S 3 .3

I Soxe
a =3/4 cm(
c 0

s=0
O .5

-X-n!M 0X (cm) -

Fig. VI-I: Square-in-a-Square, Non-scattering Absorber Problem
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B. Angular Truncation Error and Ray Effect

Any finite numerical representation of the angular dependence of

the flux will suffer truncation error. This results in inaccuracy of the

computed scalar fluxes, which feeds back through the scattering source

in the transport equation to cause inaccuracy in the spatial variation

as well. One of the objectives of the discrete element representation is

to reduce this error and thus improve the accuracy of computed

quantities.

Ray effect, however, is a particular sort of systematic error which

causes computed results to be qualitatively wrong, as well as

quantitatively inaccurate. The term "ray effect" is often used loosely

to describe any such qualitative deficiencies. For the purposes of this

discussion, a more precise definition is needed.

Ray Effect: The presence of qualitatively unreasonable

numerical results caused by the use of a discrete

angular representation of the directional flux, which

would be present even if the spatial quadrature were

performed analytically, or with a vanishingly fine mesh.

As an example of ray effect, figure VI-2 shows results for the test

case of figure VI-I. These are Green's function solutions with discrete

ordinates angular quadrature, evaluated at the midpoints of 16 intervals

of width 1/8 cm along the top edge of the problem. The S 2G, R and S2G,2R

solutions show the results of projecting a single ray from the source

region to the edge of the absorber. These solutions are neither non-zero

everywhere nor monotone decreasing. However, comparison with the

benchmark solution shows S2G,64R to be essentially converged in

azimuthal quadrature.

VI-3
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C. Quasi-Ray Effect and Spatial Truncation Error

As with the angular representation, the finite numerical

Srepresentation of the spatial variation of the fluxes results in

truncation error causing quantitative inaccuracy of computed results.

Although less generally recognized, systematic errors can also occur,

* resulting in qualitative inaccuracy. These inaccuracies are, in

practice, quite difficult to distinguish from those caused by the

angular discretization, but the conceptual distinction is important. In

view of this, the term quasi-ray effect is defined for use here.

*', Quasi-Ray Effect: The presence of qualitatively unreasonable

numerical results caused by the use of a discrete

spatial representation of the directional flux, which

would be present even if the angular quadrature were

performed analytically, or with a vanishingly fine mesh.

As an example of quasi-ray effect, the test case of figure VI-l is

solved by S2G,64R using discrete spatial quadratures. Since the angular

quadrature is essentially converged, any appearance of ray effect should

be attributable to the spatial quadrature. The spatial mesh used is 16

by 16 cells of size 1/8 cm by 1/8 cm. The resulting curves of J arey

thus comparable to those presented above. Figure VI-3A shows the results

for two spatial quadrature methods, diamond difference with negative

flux fixup (DDF) and step characteristic (SC). With a total cross-

-i
section of 0.75 cm , the cells are slightly less than 1/10 mean free

path in height and width, and this is a fine enough mesh that the DDF

curve nearly matches the corresponding analytic curve in figure VI-2.

The spatial oscillations of DDF, like noise, have averaged out.
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Fig. VI-3: Quasi-Ray Effect in Step Characteristic Method
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'" .. The SC solution in figure VI-3A shows a distinct quasi-ray effect.

The flux directly above the source region is too high and that just

adjacent is too low. This comes about in the following way. Consider one

;.. of the azimuthal quadrature directions in the S2G,64R set which

represents streaming of particles upward and to the left, as shown in

-" figure VI-3B. If the SC method were to accurately represent a collimated

beam of particles streaming in this direction, starting with a source

only in cell 7, then the flux would step through the space mesh

obliquely, as does a knight on a chess board, moving from cell 7 through

cell 6 of that figure, so that none of the flux would reach cells 3 and

9. However, because the SC method assumes a constant flux distribution

along each cell interface, part of the flux is "averaged" to the right

along the 7-8 interface, and again along the 8-9 interface, arriving,

incorrectly, in cell 9. Similarly, some of the flux crosses through cell

4 into cell 5, and is "averaged" to the left along the 4-5 interface,

thence crossing through cell 2 into cell 3. Thus, some of the flux goes

off to the left like a bishop, while most of the flux goes up the grid

like a rook. Rather than a collimated beam, the streaming is modelled as

a broad swath which more-or-less averages out to motion in the intended

direction. The closer that direction is to diagonal, the better

collimated the beam; but for directions far from the diagonal, the flux

4'S moves straight up the grid with a small smear out to one side. Since the

S2G,64R quadrature includes many such oblique angles, this error

accumulates systematically, overestimating the flux directly above the

source. The flux is decreased just outside this band, i.e. at x just

greater than 1/2 cm, since the particles that should have arrived there

have increased the flux above the source, instead. Similarly, transport

VI-7
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along the cell diagonals (like a bishop) accumulates so that the flux

diagonally opposite the source (near x = 2 cm) is also overestimated.

The overall result is qualitative error which is similar to what

one would expect for ray effect if a quadrature set which included only

the verticle and diagonal directions were used. This is the quasi-ray

effect defined above.

D. Combined Angular and Spatial Truncation Errors

In practice, both the spatial and angular quadratures are discrete

so that it is difficult to distinguish ray effect and quasi-ray effect.

The use of analytic spatial or angular quadrature is normally

infeasible. Only the simple example chosen here, without scatter, has

made it possible to demonstrate the independent nature of each.

Figure VI-4A shows the S2G,IR solutions for step, DDF, and SC

- - spatial quadratures for comparison with the analytic spatial quadrature

of figure VI-2. The step method results are very smooth and show the

presence of flux throughout the absorber region, for reasons similar to

those discussed above with reference to the SC method. The DDF results

resemble the analytic solution well in that regard (no current for x < 1

cm), but show the lack of smoothness typical of the method. The SC

results show excellent accuracy (of spatial quadrature) for this case of

diagonal streaming.

Figure VI-4B shows the S2G,2R solutions for DDF and SC spatial

quadratures. Compared with figure VI-2, the DDF results are generally

correct, but lack smoothness. The SC results are smooth, but show the

beam spreading described above for this non-diagonal streaming

direction.
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Carlson and Lathrop have remarked upon the interaction of spatial

and angular quadrature.

"Experience has shown that errors involved in spatial
and angular quadrature are interdependent. Qualitatively, the
error surface is like a valley between two ridges. If error
is plotted against order of angular quadrature along one axis
and order of spatial quadrature along an orthogonal axis, the
ridges of the surface lie above these axes. Hence, if a
calculation gives a result in the error valley, both
quadratures must be refined to remain in this error valley.
On the other hand, for a given spatial mesh, refining the
angular quadrature may actually increase the error, and
conversely." (Ref. 4:35]

The examples presented in this chapter tend to explain these

observations. A low order angular quadrature should suffer from strong

ray effect, due to the use of a few narrow beams of streaming particles;

but the spatial quadrature, for a similarly coarse mesh, broadens out

these narrow beams, reducing the apparent ray effect. Arbitrarily

refining only the spatial mesh would narrow down the beams, letting the

ray effect be seen. Conversely, a coarse spatial mesh should suffer from

strong quasi-ray effect, but a correspondingly coarse angular mesh

prevents this. With only a few angles, the spatial errors seem random,

and are considered as mere truncation error. But arbitrarily refining

only the angular mesh causes accumulation of this systematic error,

letting the quasi-ray effect be seen.

E. Summary

This chapter has demonstrated some characteristics of the discrete

- . ordinates method.

1 - Spatial quadrature schemes smear out the angular rays

2 - Use of a limited number of angular directions often ameliorates

the quasi-rays of the spatial scheme

VI-IO
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Success of S may be due, in part, to the combination of these two
N

effects. On the other hand, the general truncation error implicit in the

method has precluded application to some types of problem, such as

vacuum ducts.

The discrete elements method avoids ray effects not by smearing out

fixed rays, but rather by steering the rays. This means of coupling the

spatial and angular representations then requires a spatial quadrature

scheme which will accurately propagate the element flux as a collimated

beam in the steered direction. Recent progress has been made in

developing higher order spatial quadrature schemes, such as the linear

characteristic and linear nodal methods, which should be of value in

this regard. The discrete elements method may also be viewed as a higher

order angular quadrature scheme, which should complement these new

spatial quadratures. Success of the discrete elements method should be

judged both on its ability to produce the results of a high order

discrete ordinates calculation with the use of fewer rays, and on its

ability to handle difficult problems more accurately than S . The

following chapters present the results of numerical testing of this

ability.
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VII. Versions of the Discrete Elements Method

The previous chapters have shown that there are several degrees of

.0 freedom in designing a discrete elements scheme: quadrature rule for the

individual elements, angular mesh type and size, spatial quadrature for

the auxiliary and main flux calculations (not necessarily the same), and

the coupling between the auxiliary and main fluxes.

A. Specification of a Discrete Elements Numerical Scheme

Notation to identify the particular combination of choices

constituting a specific discrete element method is defined as follows:

Prefix - the general notation, LN, is preceded by an abbreviation

indicating the quadrature rule used within each discrete element:

SR - Simpson's rule

G3 - Gauss-Legendre three-point quadrature

NC - Newton-Cotes (five-point) rule

Subscripts - the general subscript, N, is replaced by a subscript

indicating the type of angular mesh and number of mesh intervals. These

subscript conventions were introduced in chapter III.

Superscripts - the superscripts indicate the spatial quadrature

method(s) used for the auxiliary and main fluxes. The abbreviations for

the superscripts are:

Step - step method

DD - diamond difference

DDF - diamond difference with negative flux fixup

SC - step characteristic

LC - linear characteristic

VII-I
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Thus, a notation of G3-L2G ' SC/DDF would indicate a discrete

elements scheme with three-point Gauss-Legendre quadrature in azimuth

* . within each element of a three cell equal weight azimuthal mesh and with

two-point Gauss-Christoffel polar quadrature, where the auxiliary fluxes

are calculated by the step characteristic method and the main fluxes by

.. diamond difference with negative flux fixup. Portions of the notation

which are determined by the context of a discussion are usually omitted,

for simplicity.

B. Coupling of Auxiliary and Main Fluxes

In computing the auxiliary fluxes by the discrete ordinates method,

it is possible to either use the scalar flux from the main calculation

or to compute a separate scalar flux directly from the auxiliary fluxes.

In the former case, the auxiliary fluxes are coupled to the main fluxes

by feedback through the source term. In the latter case, the auxiliary

fluxes are uncoupled from the main fluxes. (Note that the main fluxes

are always coupled to the auxiliary fluxes through the estimation of the

streaming directions of the main fluxes, which is the object of the

exercise.) Coupling would seem to offer more accurate auxiliary fluxes,

and hence more accurate steering of the main fluxes, assuming stability

is satisfactory. On the other hand, uncoupling preserves the linearity

of the auxiliary flux calculation, ensuring convergence. Uncoupling also

means that the streaming directions of the main fluxes are fixed, in the

sense of being determined independently, so that the convergence of the

main calculations is also assured.
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The relative merits of coupling vs. uncoupling were evaluated in

one-dimensional L N and coupling was consistently the more accurate

technique. Uncoupling speeded convergence only slightly, for the

problems considered. Uncoupling could allow the streaming directions to

be computed in advance and stored for use in the main calculations

(although this would require rather vast storage resources for practical

" . problems), but the decrease in computational effort of this scheme

* *" proved negligible. It was concluded that coupling is the scheme to use.

If poor convergence is encountered, convergence can be improved by

refining the spatial mesh or using a smoother spatial method, rather

than by uncoupling. The results and conclusions presented in this

dissertation refer implicitly to the coupled form of discrete elements.

C. Optimization

For computer implementation, a numerical method may be optimized in

two important ways: with respect to execution time and/or with respect

to storage. The dollar cost of a calculation may be dominated by either

of these factors, depending on the computer facility. One of the

objectives of this research is to identify the "best" discrete element

method, based on accuracy vs. execution time with near minimum storage.

The next chapter presents execution time and storage requirements for

two-dimensional versions of the discrete elements method.

2%.
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VIII. Computer Implementation

This chapter compares the computer execution time and memory

requirements of the discrete elements and discrete ordinates methods.
.4,

4.4 This information facilitates cost-effectiveness comparisons of the two

methods and establishes the feasibility of the discrete elements method.

A. Problem and Quadrature Dimensions

The following memory requirements apply to a problem mesh

consisting of I cells in the x direction by J cells in the y direction,

and K polar directions or elements by L azimuthal directions or

elements. The IJ space cells are partitioned into R regions of constant

material and source parameters, not necessarily contiguously located.
..

B. Discrete Ordinates Memory Requirements

The discrete ordinates method requires the following arrays:

Spatial Arrays - Three arrays of size IJ are required for the all-

angle flux for the previous iteration, Fold' the scalar flux for the

iteration in progress, F and the indexing array which records tonew'

which region each cell belongs. Three arrays of size R are required for

the material constants, c, o, and Q0 (= S/). One cell spacing array of

size I is required for Ax, and one of size J for Ay, assuming non-

uniform cell sizes.

Angular Arrays - For minimum storage, two arrays of size K are

* required: one for sin(e) and one for the polar weights, Wk. Two arrays

of size L are required for the azimuthal angles and weights. Execution
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speed is slightly enhanced if arrays of size KL are used for 71, , and

Wk,l1

Cell Boundary Flux Arrays - If two vacuum boundaries are available,

" then the boundary values of the d4rectional fluxes need not be stored

- . between iterations. Within an iteration, two arrays of size I and two of

-.W size J are required for the intercell boundary fluxes. If there are no
A.'

- .°vacuum boundaries, then KL sets of these arrays are required to save the

needed boundary values of the directional fluxes between iterations.

Optical Thickness Arrays - Although not required, execution speed

is improved if the optical thicknesses of cells in each region and in

each quadrature direction are stored. Assuming a uniform space mesh

within each region, this requires two arrays of size RKL, otherwise it

would require two arrays of size IJKL. This is probably impractical

except in the former case and with relatively small R, and it is assumed

that these arrays are not used.

Minimum Memory Requirement:

With Vacuum Boundaries: 31J + 3R + 3(I+J) + 2(K+L)

Without Vacuum Boundaries: 31J + 3R + (2KL+I)(I+J) + 2(K+L)

C. Discrete Elements Memory Requirements

The discrete elements method requires the storage described above

for the discrete ordinates method, with the element main fluxes taking

the place of the ordinate fluxes, and has additional storage

requirements for the auxiliary fluxes. Assuming the element quadrature

rule has A auxiliary fluxes per element, the following minimum of arrays

are required:

With two adjacent vacuum boundaries, 2A arrays of size I and of

size J are needed for the intercell auxiliary fluxes and 2A arrays of

VIII-2

7-.



size K and of size L are needed for the auxiliary direction quadrature

parameters. Without vacuum boundaries, KL sets of 2A arrays of size I

and of size J are needed for the auxiliary flux boundary values, in

'- s addition to the auxiliary quadrature parameter arrays.

Minimum Memory Requirement:

With Vacuum Boundaries:

31J + 3R + (2A+3)(I+J) + (2A+2)(K+L)

Without Vacuum Boundaries:

31J + 3R + [2KL(A+1)+l](I+J) + 2(A+l)(K+L)

"i'I:2 0 "0^0IT I
.. ° ,I I

T- T. GL

, _I I I
- , Y

a -- I I Iu
II I

0i T / 6  TVl 3 1 2

Fig. VIII-l: Quadrature Set for SR-L2G,3

Additional memory may be used to speed execution with Simpson's

rule or Newton-Cotes rule, as mentioned in chapter III. As an example,

figure VIII-l shows the quadrature set for the SR-L2G,3 scheme for the%-.,3

principal octant. The circles mark the element center auxiliary

directions; the squares mark the element edge auxiliary directions at

the edges of the octant; the diamonds mark the element edge auxiliary

directions internal to the octant. Each of these last four directions is

VIII-3
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common to two elements, and could be computed (throughout the space

mesh) only once, with the first element walk, and reused for the second

element walk. This results in a 10%-15% savings in execution time for

this quadrature. The cost in storage is an additional array of size. IJ,

if no vacuum boundaries are used, and two such arrays if vacuum

boundaries are used (since octants are done in pairs: a single elements

is walked in from vacuum boundary to non-vacuum boundary, reflected, and

walked back out to the vacuum boundary). To take full advantage of this

quadrature set overlap in SR-LK,L requires (K+I) sets of these arrays. K

sets are required for the directions marked with triangles in figure

VIII-2, an example showing SR-L 2 3, and one set is needed for the

-. - diamonds. This provides about a 15% savings for this example, and up to

about 25% for a fine angular mesh.

1G

3

4W 0 0 0

0

0 iT/1 2  / 6  nt/4 7"/3 5 7/ 2 2 /2

Fig. VIII-2: Quadrature Set for SR-L2, 3

This memory requirement, (K+I)IJ, may be prohibitive, but it can be

quite reasonable when compared to the GIJ storage (for Fold) required

for G energy groups, since G is often large and K=4 is probably maximum.

VIII-4
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D. Example Comparison of Storage Requirements

Table VIII-I shows the memory requirements for an example case of a

100 cell by 100 cell space mesh with 25 regions. The minimum memory

requirements, measured in array elements, are given for two situations,

with and without vacuum boundaries. The formulas for conventional S are
N

slightly different than those above, and the result is shown for S
16*

Method With 2 Vacuum Boundaries No Vacuum Boundaries

1 16 30,783 44,783

-2G3R 30,685 32,685

L2G- 31,915 39,915i-[ [ 2G,3

L 2,3  32,735 44,735

Table VIII-l: Example Case Memory Requirements

With two adjacent vacuum boundaries, the extra memory required for

the discrete elements method is negligible. Without vacuum boundaries,

it is larger, but not problematical. For very large spatial mesh

problems, where memory may be a limiting factor, the three arrays of

size IJ dominate all the schemes, so that the discrete element method is

essentially equivalent to discrete ordinates in storage requirements.

E. Execution Times for SN Spatial Quadratures

The execution speed of the discrete ordinates method is determined

".4 almost entirel . by the spatial quadrature subroutine. Table VIII-2 gives

the 4,prf r ,.,ate execution costs of elementary mathematical floating

point c tions and function evaluations in units of Cray-i clock

cycl-s. A short accuracy square root routine of approximately six
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decimal place accuracy is estimated to be achievable using 65 clock

cycles. A short accuracy (four to six decimal places) routine for

,- ,evaluating both the sine and cosine costs 46 cycles using the following

formulas [Ref. 1:76]:

v =u * u (VIII-l)

cos(u) = (.03705 * v - .49670) * v + 1.0 (VIII-2)

sin(u) = ((.00761 * v - .16605) * v + 1.0) * u (VIII-3)

Operation: + - * / if exp sqrt sin & cos (both)

Clock Cycles: 4 4 5 20 8 128 65 46

Table VIII-2: Cray-i Floating Point Execution Times

Estimates of the execution costs of the two dimensional spatial

quadrature schemes of chapter V, based on the above clock times, are

presented in table VIII-3. Larsen and Alcouffe [Ref. 51 have recently

developed a linear characteristic method for xy geometry with a cost of

about 600 clock cycles. The diamond difference method requires more than

the indicated 102 clock cycles for cells where fixups are required; the

step characteristic method requires slightly less than 267 cycles if the

quadrature direction lies exactly on the space cell diagonal. The

numbers given are generally representative, however.

XY Spatial Quadrature: Step DDF SC LC

Clock Cycles per Call: 56 102 267 600
. -

Table VIII-3: Discrete Ordinates Spatial Quadrature Subroutine Costs
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F. Execution Times for L Streaming Direction Averaging
N

The cost of execution of a discrete elements scheme is determined

by the sum of three sets of subroutine calls:

1 - Auxiliary flux spatial quadrature (per table VIII-3)

2 - Streaming direction flux-weighted averaging (per table VIII-4)

3 - Main flux spatial quadrature (per table VIII-3)

The spatial quadratures are computed by the same subroutine(s) as in

discrete ordinates, although different schemes can be used for the main

-* vs. auxiliary fluxes. The extra cost of the discrete elements method

(besides the auxiliary flux calculations) is for the computation of the

flux-weighted streaming directions. These costs are presented in

table VIII-4, below, and assume the use of short accuracy square root,

sine and cosine algorithms. Values are given for those xy geometry

methods which were tested. An alternative scheme of directly averaging

the x- and y-direction cosines was tested and abandoned. It avoided the

sine and cosine needed to convert the averaged (T,O) to (11,n), but cost

167 clock cycles and gave unsatisfactory numerical results. The short

accuracy sine and cosine fits proved to have no degrading effect on the

overall accuracy of the discrete elements method.

Method: Clock Cycles:

Simpson's Rule or Gauss-Legendre (3-point):

Azimuthal averaging only (L KG,L) 160

Azimuthal and polar averaging (LK) 288
K,L

Newton-Cotes (5-point) Rule:

Azimuthal averaging only (LKG,L) 186

Table VIII-4i Execution Times for L Streaming Direction Averaging
-bN

VIII-7
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G. Example Execution Cost Comparison

As an example of the use of the above information, consider a

SC SCSC
comparison of S and G3-L . The discrete ordinates scheme,

16 2G,3
S uses 144 total quadrature directions, for a cost of 38,448 cycles

%/" 16'

per space cell. The G3-L discrete elements method uses three auxiliary

fluxes, one direction averaging, and one main flux for a cost of 1228

cycles per element per space cell. With 24 elements total, the cost is

*29,472 cycles per space cell. Assuming both converge equally rapidly,

these figures give the relative cost of the two methods: G3-L 2G,3SCSC

SC
costs about 77% as much as S16

H. Computer Programs for Testing the Discrete Elements Method

,* The computer programs used to test the discrete elements method

were written in Fortran-IV (with extensions similar to WATFIV) and run

-". on an Intel-8088 based microcomputer. The programs were specialized to

handle the test cases efficiently and so are not of general

*' applicability. For this reason, and because the programs were

straightforward implementations of the equations and algorithms

_.: described in this report, listings of the program code are not included

-here, but are on file at the Physics Department of the Air Force

Institute of Technology, Wright-Patterson AFB, Ohio, 45433.

The discrete ordinates codes were validated by comparison with

sample cases run for that purpose by E. W. Larsen of the Los Alamos

National Laboratory. The discrete elements codes were validated by use

of the midpoint rule for the element quadrature and comparison with the

4.:: equivalent product quadrature discrete ordinates calculations.
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I. Conclusions

As with most higher order methods in numerical analysis,

computer implementation of the discrete elements method entails three

costs: increased program complexity, increased storage requirements, and

increased execution times. The remainder of this report will deal with

the question of whether the method also provides increased accuracy,

and, if so, increased efficiency on the basis of cost vs. accuracy.

Chapter II presented the discrete elements algorithm, and showed

that the essential simplicity of structure of the discrete ordinates

method is retained.

This chapter has shown that the LN method has only modestly

increased storage requirements, if a vacuum boundary is present in both

the x- and y-directions. In the absence of vacuum boundaries, the

storage requirements are more substantial, but still about equivalent to

SN requirements. The storage penalty is of even less concern in multi-

group problems, since the increase only applies to the one energy group

being iterated at a time.

Execution times are similarly increased, but are comparable to

discrete ordinates quadratures currently in use, such as S 16. Two

approaches to minimizing execution c9sts are possible. One is to use the

least expensive of spatial quadrature schemes for the auxiliary fluxes,

since most of the cost of the method is for these calculations. The

other approach is to use the highest order of spatial quadratures for

both the main and auxiliary fluxes so that the spatial mesh may be

coarse. The next chapter evaluates these approaches for the case of one-

dimensional (slab) geometry, since high-order spatial quadratures are

readily employed in this geometry.
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IX. Test Cases in One-Dimensional Geometryand Results

This chapter compares the performance of L and S schemes for two
N N

problems in one-dimensional Cartesian geometry. Evaluations in xy-

geometry are presented in the next chapter.

A. Scatter-Free Shield Penetration

This test problem consists of a uniform , isotropic flux incident

upon the left of a shield, with vacuum on the right of the shield. The

IN shield is 20 mean-free-paths (mfp) thick and is purely absorptive. The

-- exact solutions for the directional flux and current within the shield

are the analytic functions:
.".

"-Ox A/(I-l
F(p,x) = F0 e (IX-l)

J (p,x) = jiF e x a (IX-2)

Integrating equation (IX-2) over p at ax = 20 gives the current

penetrating the shield:

Jx = 0.5 E3 (20) = 4.50456 E-11 (IX-3)

where F0 = 1 and E is an exponential integral.
0 °3

The problem was solved using SN with equal weight quadrature and

with Gaussian quadrature, and using LN with equal weight elements and

Gaussian weight elements for various angular meshes and space schemes.

In each case, 40 space cells of 1/2 mfp thickness were used. For this

problem, since Q = 0 in every cell, the step characteristic (SC) and

linear characteristic (LC) methods are identical.

IX-1
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Table IX-1 presents the error ratio of the current penetrating the

shield for the various schemes. Error ratio is a computationally

convenient measure of error, here defined as

Error Ratio (xXexac) = Ix - XexactI / Ix + Xexact (1I)-4)

where Xexact is the reference or benchmark value. This has the advantage

dover percentage that if x is too large by a factor of 2, the relative

error is 100% but if x is too small by a factor of 2, it is -50%,

whereas the error ratio is 1/3 in each case. For small errors, the error

ratio is approximately half the conventional relative error. An error

ratio of .05 corresponds tc approximately 10%, for example.

-,'N Method N: 2 4 6 8 12 24

Three-Point-Gaussian Discrete Elements:

L EW Step/SC .556 .303 .210 .149LEW•.

LGWStep/SC .556 .220 .0846 .0407 .0191 .00504

L S/ .395 .0488 .00880L EW•

L SC/SC .395 .0106 .00122 .000506LGW-.

Simpson's Rule Discrete Elements:

L .578 .310 .146 .0670 .0169
EW

L -SC/SC .578 .161 .0223 .00930 .00208 .00012

Discrete Ordinates:

SEWSC 1.000 .978 .791 .553 .273 .0696sEW
SGQ 1.000 .572 .0759 .00138 .000007 0

N: 8 16 24 32 48
I""SC

S SC..553 .156 .0696 .0392 .0174

EW

SSC .00138 .000007 .0000004 0 0
GQ

Table IX-1: Error Ratio of Shield Penetration Current

IX-2
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1. Step vs. SC for Auxiliary Fluxes

A comparison of the L s t ep / sC results with the LsC / S C results

indicates the superiority of using the higher order method for the

* . auxiliary calculations. Even if allowance is made for the lower cost of

the step method, SC is more effective. For example, assuming the step

method costs 1/4 as much as the SC method, then with three auxiliary

Step/SC SC/SC
fluxes per element, L8EW costs about the same as L4E W  , but

has three times as much error. For larger N, the disparity in

.. ..*performance is even greater.

2. Simpson's Rule vs. Gauss-Legendre (3-point) Quadrature

A comparison of the G3-L S C / s C and SR-L s C / S c results shows

consistently better results for the G3 method. Even if the SR scheme

reuses the overlapping auxiliary fluxes, and so costs only 3/4 as much

as the G3 scheme, it still cannot compete. For example, the G3-L6EW and

the SR-L8E W cost about the same, but the SR scheme has over 7 times

larger error.

3. Equal Weight vs. Gaussian Weight Discrete Elements

The Gaussian weight discrete elements outperforms the equal

weight quadrature mesh for this problem. The reason is that the flux

.--. penetrating completely through a 20 mfp thickness of non-scattering

" absorber is strongly forward-biased, so that the element(s) closest to

1' = 1 carry all the information. With Gaussian weights, the discrete

elements are crowded toward the poles and sample this information more

effectively.

4. Discrete Elements vs. Discrete Ordinates

When compared on the basis of number of elements/ordinates,

the G3-LS C/SC schemes have smaller error than the SSC schemes, but also
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have slower convergence as N is increased. For large enough N, it is

expected that SN will be the more accurate. These discrete element

methods, however, have roughly four times the cost per element of the

discrete ordinates schemes. Comparing S8 to L2F etc., the Gauss-Legendre

quadrature discrete ordinates method is quite clearly the most cost

effective scheme tested, for this problem. The bottom rows of table IX-I

facilitate this comparison. This is not necessarily a representative

comparison, however, because the problem is ideally suited for the SN

quadrature in two ways. First, the angular flux distribution which S
N

*. seeks to represent with a high-order polynomial is in fact an analytic

function well suited to such a representation, namely, the function in

equation (IX-l). Secondly, the SC spatial quadrature is exact (except

for rounding error accumulation) for this source-free, scatter-free

medium, so that the data points used to obtain the high-order fit have

essentially no error.

B. Two-Region Problem

This problem consists of a strongly scattering source region with

weakly scattering shielding and vacuum outer boundaries. Only half of

the system is solved, using a symmetry boundary on the left and vacuum

on the right. The problem parameters are summarized in table IX-2.

Region Source c Region Width # of Cells Cell Width

(#/cm2/sec) (cm)

Source 1 0.5 5 40 0.125

Shield 0 0.1 15 120 0.125

Table IX-2: Parameters for Two Region Test Problem

IX-4
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1. Error "Norms"

Two error norms are used in each region. (The term "norm" is

used loosely ht :e; no attempt is made to demonstrate that these are true

norms in the function-analytic sense.) One is an integral norm: the

error ratio of the integral of the scalar flux over the region. This is

a measure of the ability of the method to compute reaction rates or

related eigenvalues. The other is a pointwise norm: the error ratio of

the scalar flux as computed for each spatial cell, averaged over the

cells of the region. Tables (IX-3) through (IX-6) present these results.

Method Quadrature: 2 4 6 8 48

Three-Point-Gaussian Discrete Elements:

L Step/DDF .000112 .000058 .000044 .000038EW

L EW Step/LC .000097 .000040 .000025 .000019

L Step/LC .000097 .000054 .000035 .000026-:i LGW

LEWLC/LC .000021 .000012 .000011 .000010

LGWLC/LC .000021 .000014 .000012 .000011

Simpson's Rule Discrete E'.ements:

- LC/LC
L .000103 .000004 .000006 .000009
EW

Gaussian Quadrature Discrete Ordinates:

Step .00619 .00200 .000983 .000639

sDDF .00534 .00125 .000286 .000025

=- SC
Ssc .00537 .00128 .000329 .000022

LC

S .00535 .00126 .000553 .000307 Benchmark

Quadrature: 8 16 24

5LC .000307 .000071 .000027

Table IX-3: Error Ratio of Scalar Flux Integrated over Source Region
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2. Step/LC vs. Step/DDF

.Ie least expensive discrete element scheme, per cell per

element, which might produce reasonable accuracy, is the LSteP/DDF

scheme. The step auxiliary calculations are smooth and the DDF 'main

calculations are relatively accurate. Comparison of the results with

those of the L S te p/LC scheme shows the latter to be more accurate on an

equal N basis and to have faster convergence in N, but (allowing for

twice the cost per element) the two are about equally cost-effective.

Method Quadrature: 2 4 6 8 48

Three-Point-Gaussian Discrete Elements:

LStep/DDF .00122 .000630 .000476 .000414
EW

L E Step/LC .00105 .000432 .000268 .000201" LEW

L Step/LC .00105 .000586 .000382 .000283LGW••

~LC/LC L L/LC.000228 .000129 .000115 .0, 3109
,-..- EW

L L/C.000228 .000148 .000125 .000116
GW

Simpson's Rule Discrete Elements:
"." ~~LC/LC.022 .004 .002 .001

LELC/LC .00112 .000041 .000070 .000093

EW

Gaussian Quadrature Discrete Ordinates:

SStep .0630 .0214 .0106 .00693

5.. .0548 .0134 .00312 .00109

S .0552 .0138 .00357 .000241
r sLC

S .0550 .0136 .00600 .00334 Benchmark

Quadrature: 8 16 24

SLC .00334 .000771 .000293

Table IX-4: Error Ratio of Scalar Flux Integrated over Shield Region

IX-6
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3. Equal Weight vs. Gaussian Weight Elements

For both integrated and pointwise errors and in both source

and shield regions, LEW is more accurate, and hence more cost-effective,

than L GW. The only exception in the four tables is the L4 average error

ratio in the shield region. This observation holds for both the Step/LC

and the LC/LC spatial quadratures. The introduction of scatter and an

interior material boundary make this problem more realistic than the

non-scattering shield, and show the validity of equal weight composite

quadrature for less well-behaved fluxes.

Method Quadrature: 2 4 6 8 48

Three-Point-Gaussian Discrete Elements:

S L Step/DDF .00106 .000540 .000392 .000356
EW

L Step/LC .000816 .000276 .000142 .000087

L Step/LC .000816 .000441 .000253 .000162
GW

L LC/LC .000314 .000073 .000057 .000046
EW

L LC/LC .000314 .000109 .000068 .000061

Simpson's Rule Discrete Elements:

L .00169 .000433 .000186 .000.03

EW

Gaussian Quad-ature Discrete Ordinates:

SStep .00761 .00258 .00211 .00259

SDDF .00855 .00241 .000780 .000303

S C  .00850 .00232 .000639 .000056

SLC .00846 .00227 .00104 .000597 Benchmark

Quadrature: 8 16 24

SLC .000597 .000149 .000058

Table IX-5: Average Error Ratio of Scalar Flux in the Source Region

IX-7
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.4. LC/LC vs. Step/LC

'I aFor both integrated and pointwise errors, and in both source

and shield regions, and even allowing for a 2:1 or greater cost ratio,

LLC/LC is more accurate and more cost-effective than LSteP/LC. Similar

comparisons with LSC/SC (data not shown) reveal the same trend: theH higher-order the spatial quadrature, the more accurate and cost-

effective the discrete element method. The use of LC for both auxiliary

*and main fluxes can be even more efficient if its ability to use a

coarser spatial mesh is used to advantage.

-.- Method Quadrature: 2 4 6 8 48

Three-Point-Gaussian Discrete Elements:

LEW .0474 .0270 .0188 .0139

L Step/LC .0404 .0203 .0124 .00770

L GW Step/LC .0404 .0130 .0446 .00287

LELC/LC .0340 .000914 .000094 .000027
EW

L LC/LC .0340 .000483 .000123 .000033.. LGW

Simpson's Rule Discrete Elements:

L EWLC / Lc  .203 .0425 .0107 .00360

Gaussian Quadrature Discrete Ordinates:

S t e p  .601 .185 .223 .224

SDDF .707 .0785 .00700 .00593
S

S  .704 .0737 .000915 .000260

SLC .704 .0738 .00324 .00113 Benchmark

Quadrature: 8 16 24

SL  .00113 .000231 .000088

Table IX-6: Average Error Ratio of Scalar Flux in the Shield Region
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5. G3 vs. SR Element Quadrature

For pointwise errors, in both source and shield regions, the

three-point Gauss-Legendre quadrature provides clearly superior

performance. Even allowing for a 2:1 cost ratio (the actual ratio is

LC/LCcloser to 1.2:1), the G3-L Ew scheme is more cost-effective than the

SR-LEW . scheme.

For the integrated flux errors, the evidence is not so clear-cut.

In the source region, for example, both methods converge toward an error

ratio of 0.000010, indicating this much residual error in the benchmark

S $48L solution. But they converge from opposite directions. The G3-L 4

is nearly converged, at 0.000012, and is actually closer than the SR-L6

which is also nearly converged, at 0.000004. However, neither of these

errors is large enough for meaningful comparisons. Similar logic applies

to the data for the shield region.

6. Discrete Elements vs. Discrete Ordinates

Comparison of the best discrete elements method tested, namely

G3-LEw LC/LC , with the best discrete ordinates quadrature tested, SN with

.. Gauss-Legendre quadrature, shows that the LN method is very much more

accurate, for the same N. On a cost basis, allowing for a 4:1 cost

ratio, the bottom row of each table can be compared directly with the LLN

rows. In ;erms of the integrated flux errors, the L method is the

better performer. Even L has less error than S24 , and at 1/4 the
224

computational cost. In terms of the average errors in the source region,

L is somewhat more cost-effective. Only in terms of the average errors
* N

in the shield region is SN the more accurate for a given cost. This

occurs for reasons similar to those which applied to the non-scattering,

non-source shield penetration problem.

IX-9

. '. . , . . .. . . - .



It might be argued that a double-range Gauss-Legendre quadrature

would improve the performance of the discrete ordinates method for this

problem by modeling the flux discontinuity at p = 0 exactly, as with

the double PN method. With this quadrature, SN could possibly be more

cost-effective than L N. However, Carlson and Lathrop have reported that

the single-range quadrature is more accurate for problems with optically
thick regions, while double-range is better for problems with many thin

regions [Ref. 4:341. The regions in this problem are optically thick (10

and 15 mfp), so that the comparison with single-range SN should be a

fair one.

C. Conclusions

This chapter has presented the results of numerical testing of

various discrete element and discrete ordinate schemes in slab geometry.

As a proof of concept, two test cases were used. While more extensive

. testing would be needed to support categorical conclusions, the data

presented do indicate the following trends.

1 - Equal weight discrete elements are generally more accurate than

Gauss-Legendre weight elements, for realistic problems.

2 - Three-point Gauss-Legendre element quadrature is superior to

Simpson's rule.

3 - LN method can be more cost-effective than Gaussian SN when the

linear characteristic space scheme is used for both the auxiliary and

main fluxes, and the three-point Gauss-Legendre rule is used for the

element quadrature.

4 - The expectation that "the harder the problem, the more

advantageous the L method" is supported by this evidence.

N
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5 - Convergence and accuracy of LN are degraded by use of

inaccurate or, especially, non-smooth space schemes for the auxiliary

fluxes. LN with step characteristic or linear characteristic auxiliary

quadrature converged in the same number of iterations as SN# however.

The above tests in one dimension implicitly avoided consideration

of ray effects, since there are no ray effects, per se, in one

*' dimensional (time independent) problems. The next chapter uses two test

problems, one of which is similar to the ray effects problem of chapter

-'- V. An objective of those tests is to determine the applicability in two

dimensions of the observations made here in one dimension.

.
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X. Test Cases in Two-Dimensional Geometry and Results

This chapter compares the performance of LN and SN schemes for two
i t N N

problems in two-dimensional Cartesian geometry. The first problem is a

variation of the square source in a square absorber problem introduced

in chapter VI. A review of results from the literature provides

qualitative comparisons of performance in ameliorating ray effects. The

second problem models a shielded plane source with a vacuum duct in the

shield, and is used for quantitative as well as qualitative comparisons

of performance on a difficult problem.

A. Ray Effect Problem and Comparison of Results

A test problem which has been used in the literature for evaluation

of ray effect is inset in figure X-l. The problem is similar to the one

used in chapter VI, but with the source square increased in size and

with scatter included. The results used for comparison are the cell-

average scalar fluxes along the top row (or up the right column, by

symmetry) of a 30 cell by 30 cell spatial mesh. This mesh is nearly

twice as fine as that used in chapter VI, so the quasi-ray effect should

be reduced.

1. Conventional Discrete Ordinates

Lathrop used this problem with several angular quadrature

schemes. Figures X-1 through X-4 are taken directly from reference 8 for

qualitative comparisons. Figure X-l shows the results for S2, S4, and

$16' using conventional (totally-symmetric) quadrature using TWOTRAN

(and presumably, diamond difference spatial quadrature). The substantial

wobbles in the curves are described by Lathrop as ray effect.

X-1



2. Rotationally Symmetric Discrete Ordinates

Figure X-2 shows the results using discrete ordinates with a

product quadrature set consisting of a single row of directions at a

fixed latitude (polar angle), equally spaced in azimuth and equally

weighted, i.e., the "rotationally invariant" quadratures. In Lathrop's

notation, these are R2 , R4 , RV and RI6 These show decreased, but

still significant, ray effect.

3. "Consistent" Discrete Ordinates

Figure X-3 compares the S16 result with that of Lathrop's CS2

method. This "consistent SN method [Ref. 101 used explicit coupling of

the directional flux distribution to the spatial quadrature (as does

discrete elements) derived by a first-order Taylor expansion of the flux

3 about the SN quadrature angles. This scheme shows a vast improvement

over the S2 scheme (to which it degenerates if the coupling is omitted),

and might seem quite promising. Its limitation seems to be that the

"consistent" treatment is an approach rather than a numerical method, in

that to increase either the set of quadrature angles or the order of the

coupling terms, or both, requires a complete rederivation of the

equations to be solved. With the discrete elements method, however,

increasing the quadrature set is a strictly mechanical procedure, and

increasing the coupling order requires only the use of a different

element quadrature rule.

4. Spherical-Harmonics-Like Discrete Ordinates

In any case, Lathrop abandoned the CS2 scheme in favor of

"spherical-harmonics-like" discrete ordinates. This method uses

fictitious sources to cause the discrete ordinates equations to conserve

* the same moments as the spherical harmonics method [Ref. 8). Results

X-2
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with these schemes, S2  P' $ P 1 ' $6- P3 ' $8- P5 ' are shown in

figure X-4. They show no "ray effect" in that they are shaped correctly,

but they have angular quadrature truncation error which systematically

affects the level rather than the shape. The convergence in amplitude

(vs. N) is relatively slow, as with the PN method. The method also has

substantially increased computational cost.

5. Compatible Product Quadrature Discrete Ordinates

Abu-Shumays [Ref. 21 investigated the possibilities of

improved performance through use of specialized "compatible" product

quadrature sets (with diamond difference spatial quadrature). He

concluded that the Gauss-Christoffel polar / quadruple-range azimuthal

product quadrature has more accuracy and less ray effect, for this

problem, than any of the other quadratures he investigated. The results

for this quadrature, S3G,6Q and S 4G,8Q are shown in Figure X-5, taken

directly from reference 2.

6. Discrete Elements

A variety of discrete element schemes were tested for this

problem using a 16 by 16 spatial grid. For the auxiliary fluxes, the

step method was found to be unacceptable in accuracy, while the diamond

difference method (with or without negative fixups) was inaccurate and

slow to converge (LKG,), or prevented convergence (L ). With the step
KL KL

characteristic method for the auxiliary fluxes and either diamond

difference or step characteristic for the main fluxes, convergence was

as fast as for the SN method. As in the one-dimensional test problems,

the Gauss-Legendre three-point element quadrature was generally more

accurate than the Simpson's Rule. The Newton-Cotes rule was about as

accurate as the Gauss-Legendre, but at greater execution cost.

X-
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• The results of two calculations with the 30 by 30 spatial grid are
• SC/DDF

shown in figures X-6 and X-7. The schemes used were G3-L 2G,3 and

SC/scG3-L2G,3  . The SC/DDF solution shows a small amplitude wiggle which

can be attributed to the spatial quadrature, since it is not present in

the SC/SC solution, and so is quasi-ray effect. The SC/SC solution also

shows a quasi-ray effect, in that there is a slight break in slope at

x = I which corresponds to the edge of the source region (as was seen

in chapter VI). These quasi-ray effects were reduced by refining the

spatial grid from 16 by 16 to 32 by 32. The SC/SC curve falls between

the S 6- P3 and 8-. P5 curves of figure X-4.
*1 Comparing figure X-6 with figures X-1 through X-5, it may be

* concluded that, for this problem, the discrete element method, with as

few as three elements in azimuth per azimuthal quadrant, ameliorates ray

effect as well as the best of previous methods.
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B. Vacuum Duct Problem: Qualitative Comparison of Results

The second test case is a duct problem which is difficult for

discrete ordinates. A quantitative comparison of LN and SN is made.

Streaming ducts in shields are a common design problem for which

empirical thumb-rules are often used. Where better solutions are needed,

Monte Carlo methods provide accurate but expensive answers. This section

presents graphs of numerical results and qualitative comparison; the

next section presents quantitative comparisons.

1. The Test Problem

Figure X-8 defines a test problem consisting of a thin source

region along the bottom of a shield with vacuum boundaries along the

top, right, and bottom. The left side of the problem is a symmetry

boundary, with a deep, narrow vacuum duct, or channel, along the edge.

It is expected that the major leakaqe through the shield will be by

streaming up the duct. This particular problem was selected as an

idealized representation of an access port in a fusion reactor design.

Such access ports are required for plasma injection, charged particle

heating beams, laser instrumentation, etc.

4" J(x)
Y

'

U Vacuum

- ,..- Source:2
*_....S-2 n/cm /sec

Vacuum 0 x(cm)2

Fig. X-8: Vacuum Duct Problem Parameters
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I2. Monte Carlo Benchmark Solution

In order to accurately assess the performance of both the

discrete elements and discrete ordinates methods, a benchmark solution

known to be both accurate and free of ray effect was required. The Monte

Carlo solution used for this purpose is shown in figures X-9 through

X-13. The solution entailed the simulation of 106 particles. Data

recorded included total leakage, total absorption, and leakage through

each of 16 equal segments along the top edge of the problem,

corresponding to the 16 cell by 16 cell spatial grid used for the

discrete elements and discrete ordinates calculations. The relative

variance of the results was approximately 1% at the one-sigma level of

confidence for the least accurate of the 16 top face leakages. This

solution was provided by W. T. Urban of Los Alamos National Laboratory

in support of this research.

3. Conventional Discrete Ordinates
.

Conventional SN quadrature solutions using various spatial

quadrature schemes were provided by E. W. Larsen in support of this

research. Diamond difference solutions are shown in figure X-9. There

are two striking observations to be made about SNDDF: the results are

not good, and they don't improve much as N is increased. The currents

are in error by factors of two to four over most of the top face of the

problem, even for S16' which uses 36 quadrature directions per octant.

The step characteristic solutions are smoother and more accurate in

4" level, and are shown in figure X-10. Larsen and Alcouffe have developed

a linear characteristic spatial quadrature method for xy-geometry

[Ref. 5]. Results with this quadrature, shown in figure X-ll, have some

improvement over the step characteristic method.

X-9
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4. Product Quadrature Discrete Ordinates

Figure X-12 shows the results of a discrete ordinates

calculation using a Gauss-Christoffel / rotationally symmetric product

SC
quadrature and step characteristic spatial quadrature: S2G3R This is

the angular quadrature underlying the discrete elements results

considered next. These results are greatly improved over the

conventional SN results, both in overall level and in shape. The

conventional SN gave a ratio of less than 4:1 for the leakage in the

duct to that on the right half of the top of the shield, even for S1 6.

The product quadrature gives a ratio of about 6:1, while the benchmark

ratio is about 12:1. In the next section, a "level norm" and a "shape

norm" are introduced to properly quantify these observations.

5. Discrete Elements

Figure X-13 shows the results for the discrete elementsSC/SC

method: G3-L 2G with 16 by 16 and 32 by 32 spatial meshes. The

ratio of duct current to that on the right is about 11:1, much improved

over all the discrete ordinates methods. Also, the leakage is monotone

[.. decreasing from left to right, as expected from the problem symmetry.

None of the discrete ordinates methods were correct in this regard.

Deficiencies of this discrete element solution are:

a - The leakage through the duct is overestimated by 20%-30%

. b - There is a slight hump to the curve at about x = 1.5 cm

c - The leakage through the shield away from the duct is

overestimated by about 15%

Item b is a ray effect and is eliminated in the L3G,4 solution. The

other two deficiencies are at least partially quasi-ray effect and are

reduced by the refined (32 by 32) spatial mesh.

yX-13
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.. C. Vacuum Duct Problem: Quantitative Comparison of Results

This section makes a quantitative comparison of the accuracy of

discrete elements solutions with that of discrete ordinates solutions,

for the problem presented in the previous section. As in chapter IX,

informal "norms" are used for this purpose. Two such measures of error

N. are used. One is sensitive to the over-all amplitude of the top face

a,- leakage. This "level norm" is the error ratio (defined by equation IX-4)

of the total leakage through the top face of the problem, i.e., through

the duct and through the shield, with respect to the Monte Carlo
*.1

benchmark solution. The table indicates the sign of the error: positive

for overestimated leakage, negative for underestimated leakage. The

other measure of error is sensitive to the relative distribution of

leakage through the top face. This "shape norm" is the average of the

error ratios of the 16 normalized cell currents. The currents are

normalized to give the same total leakage as the benchmark solution, so

that the norm will be sensitive to shape but not level. The performance

of various schemes tested is presented in table X-l, in terms of these

norms. Data is presented for the step characteristic spatial quadrature,

since the SC/DDF results show poor performance in the shape norm as a
LC

result of spatial oscillations (quasi-ray effect). S results are
16

also included. Observations based on this data are presented next.

1. Convergence of Conventional SN

ij Refining the angular quadrature from S8 to S16 provided

negligible quantitative improvement in either shape or level. Refining

the spatial quadrature from S to S16 'C, however, improved the level

but not the shape. The conventional SN angular quadrature is essentially

converged, and with poor results.

X-16
.°
a.

• '.. .'-" .' -'- -.'. '. "- '....' ". '. - ' '....' ". • . . - ." '- - "- .a W'-.'.. . ... - . " ,



Method Elements or Ordinates Level Norm Shape Norm Grid
per Octant

G3-L2G,2 4 .1018 .0594 16x16

SR-L2G,3 6 .0776 .0503 16x16

%G3-L2, 3  6 .1121 .0400 16x16

G3-L2G,3  6 .0895 .0370 16x16

SR-L3G,4 12 .0693 .0417 16x16

G3-L3G,4  12 .0750 .0381 16x16

NC-L3G,4 12 .0741 .0386 16x16

G3-L3G,6  18 .0672 .0370 16x16

S 2G,3R 6 (-).0608 .1525 16x16

S8  10 .4533 .2420 16x16

S3G,4R 12 (-).0012 .1130 16x16

S 36 .4451 .2380 16x16
16

S16 36 .3846 .2285 16x16

4S 2G,18R 36 .0611 .0366 16x16

.3G2 36 .0562 .0344 16x16.'.'. 12R

S 2G,3Q 6 .0336 .0641 16X16

S2. 6 (-).0006 .0954 32X32'.-. 2G,3Q

G3-L2G 3  6 .0658 .0319 32x32

G3-L3G 6  18 .0471 .0257 32x32°3G,6

Table X-1: Vacuum Duct: Error Norms for L and S. Results
N-

X-17
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2. Convergence in Polar Quadrature

Increasing the accuracy of polar quadrature by increasing K

for product quadratures should improve level but have little effect on
1*.~

shape. This effect is seen in a comparison of S2G,18R and S3G,12R, both

of which are essentially converged in azimuth. Also, the hybrid discrete

element method, G3-L2G,3 is significantly more accurate in level than

the corresponding G3-L2, 3 method, but only a little better in shape,

I .indicating its superiority in polar quadrature. The hybrid method is

more accurate and less expensive.

3. Convergence in Azimuthal Quadrature

Each of the product quadratures S2G,18R and S3G,12R use 36

ordinates per octant and thus have the same computational cost as S16 .

Because they apply most of their effort to the difficult azimuthal

quadrature, and because they use a composite quadrature scheme

(composite midpoint rule) to treat the ill-behaved azimuthal flux

variations, they greatly outperform the conventional quadrature. The

azimuthal quadrature is converged at a shape norm of about .035-.038 for

the various product quadrature discrete elements and discrete ordinates

schemes tested, for a 16 cell by 16 cell spatial grid. Thus, to the

accuracy of this spatial quadrature, the G3-L2G,3 scheme is essentially

converged in azimuthal quadrature. The Simpson's rule method, however,
is less effective, not being converged in shape at SR-L 2G,3 The Newton-

Cotes rule method is as accurate as the Gauss-Legendre method, but costs

more to compute.

X-18
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4. Convergence of Spatial Quadrature

For the 16x16 grid, the spatial cell size is 1/8 mfp in width

(Ax) and 1/4 mfp in height (Ay). The improvement in level (but not

shape) resulting from the use of the new linear characteristic method

with S16 indicates that the spatial quadrature is not converged. The

spatial grid was therefore refined to 32x32 for a limited number of

calculations.

The composite Gauss-Christoffel / quadruple-range quadrature,

r 2G,3Q' was evaluated for both space mesh sizes. The level error

decreased with the refined spatial grid, but the shape error increased.

This inconsistent behavior, together with the average 19% pointwise

error, indicates that the nearly exact total leakage for the method is

coincidental, as for the S3G,4R .

The improvement in the G3-L2G,3 method resulting from the spatial

grid refinement was more significant than that resulting from a

refinement of the angular grid to G3-L3G,6 (still on a 16x16 spatial

grid). This improvement was both in level and in shape. The reasons for

' 4 these improvements are considered below. With this refined spatial grid,

further improvement was noted by then refining the angular mesh as well,

to G3-L
* 3G,6-

Since the errors of shape and level remaining in the discrete~sc/sc

elements solutions, such as G3-L 2G,3 , are dominated by the spatial

quadrature, and since it was not possible to refine the spatial mesh to

convergence within the scope of this research, precise comparisons of

cost-effectiveness of the various schemes could not be made. A more

important consideration, perhaps, is the confidence level (in an

engineering sense) of the various methods, which is considered next.

-S.
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5. Confidence of Results

The foregoing discussions of accuracy and convergence have

implicitly presumed that the benchmark solution is known. From the

viewpoint of practical engineering, however, the objective of numerical

calculations is to estimate an (unknown) answer and its confidence

limits.

Taking this view, and supposing the duct problem is to be solved

only by the discrete ordinates method, the results obtained above lead

to a low level of confidence. Different families of quadrature sets

apparently converge to different results, both in shape and level. The

convergence is inconsistent with respect to the two. In terms of the

error valleys that Lathrop described, the dilemma is simply stated: "how

is one to know which solutions are in the valley?" As seen with the

total top-face leakage and the SKGLR quadratures, the hills on one side

may be positive error while the hills on the other side of the valley

are negative error. The properly conservative engineering answer is that

the shield leakage is the median of the collection of discrete ordinates

results, to within a factor of about two (for this example). This is the

reason nuclear power reactor shielding is typically over-designed.

If this same engineering problem were to be solved by discrete

elements, however, the consistent convergence in polar, azimuthal, and

spatial quadratures, toward the same answer, using different element

quadrature rules and different quadrature types (LKGL vs. LK,L ) allow a

V. much more useful conclusion to be drawn. The result can be estimated to

• a confidence of about plus or minus 10%. There may still be an "error

valley", but all the results in table X-1 are on one sidt if it, and the

hills are lower.

X-20
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D. Interaction of Spatial and Angular Quadrature

The discrete elements solutions for the vacuum duct problem were

not fully converged in spatial quadrature. As a consequence, the

auxiliary fluxes were not as accurate as possible, so that the coupling

of angular and spatial quadratures is not as effective as possible. The

errors of the G3-L 2G,3 SC/Sc solution were observed to be of three types:

1 - The leakage through the duct is overestimated by 20%-30%

2 - There is a slight hump to the curve at about x = 1.5 cm

3- The leakage through the shield away from the duct is

overestimated by about 15%.

The second item is a ray effect and is eliminated by refining the

angular mesh, but the other two are quasi-ray effects, and are reduced

by refining the spatial mesh. The objective vi this section is to

evaluate the causes of these quasi-ray effects and the possibilty of

reducing or eliminating them through the use of a higher order spatial

quadrature.
.4

1. Leakage Through the Shield

Since it is a simpler problem, the overestimation of the

leakage through the shield, away from the vacuum duct, is considered

first. The step characteristic scheme assumes a flat source distribution

within each spatial cell. This source term is Q and includes scatter. As

the flux penetrates a shield, it should be monotone decreasing, so that

the scatter-source should be decreasing across each cell (in the

direction of shield penetration). But, the step characteristic scheme

computes the cell-average value, redistributing Q uniformly across the

cell. This is a systematic error which consistently transports scattered

particles deeper into the shield, as shown in figure X-14A.

* .
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Approximate

Qt Q

Fig. X-14: SC and LC Shield Penetration Errors

The linear characteristic method models the scatter-source term, Q,

as linearly varying across each spatial cell so as to approximate both

its average and its first (spatial) moment. This eliminates, to the

accuracy of the approximation, the systematic artificial transport of

particles into the shield, as shown in figure X-14B. It is expected,

then, that use of the LC spatial quadrature with the discrete elements

method would substantially reduce the overestimation of the leakage

through the shield, away from the streaming duct.

2. Leakage Through the Duct

The presence of the duct enhances overall leakage through the

shield in two ways. Particles that originate below the duct (or scatter

below the duct) may stream freely through the shield, provided only that

0 •,they start in the right direction. This is illustrated as path A of

figure X-15. Discrete ordinates is inaccurate for this problem because

few, if any, of the quadrature directions represent this path. Discrete

- .- elements, however, can steer the streaming into this path. The second

effect of the duct is to decrease the optical thickness of the shield

for paths which cross through the duct and ultimately leak out through

the main body of the shield, as illustrated by path B.

X-22
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Fig. X-15: Paths Through the Vacuum Duct

The discrete elements method errs in a different way in handling

path B. The flux in an angular element at point C of figure X-15 would

consist of mostly path A type particles with an admixture of some path B

type particles, and would be represented by a flux-weighted average

* streaming direction such as D. Assuming analytic spatial quadrature were

somehow employed, the particles in the element would be moved precisely

in direction D; the result would be to walk the B's across the duct and

the A's up the duct. But, with step characteristic spatial quadrature,

this is not the result. Since direction D is close to the duct axis (y),

and hence far from the cell diagonal, the method is numerically

inaccurate and (as shown in section VI-C) walks the flux, like a chess

rook, straight up the duct. The renormalizing of the spatial

distribution along the cell edge to a flat approximation moves the

particles (falsely) to the left at each cell interface. The path B

particles, in effect, become trapped in the duct and escape absorption.
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The linear characteristic scheme would mimimize this form of error

by representing the flux along each cell interface with a linear fit

which, at least approximately, matches the average and the first

" - (spatial) moment along the cell boundary. This eliminates the flattening

process which moved particles leftward, and would allow the B's to cross

the duct and the A's to stream up the duct. The B's would not arrive at

the top of the duct, so that the overestimation of the duct leakage by

the step characteristic scheme should be largely eliminated. Since the

B's would be exposed to further absorption upon reentering the shield

material, only some would survive to leak through the shield, so that

the total leakage would be reduced. This same feature would reduce or

eliminate the quasi-ray effect of the SC scheme seen in the square-in-a-

square problems in sections VI-C and X-A.

The linear characteristic scheme is not merely higher order than

the step characteristic scheme, but it also corrects the specific

deficiencies which are the source of the errors observed in the discrete

elements solutions. Thus, the linear characteristic method is expected

to correct both the level and shape errors of the step characteristic

method, when used for both the main and auxiliary flux calculations of

the discrete element method. A demonstration of the validity of this

logic by actually programming the combined linear characteristic /

discrete elements method was beyond the scope of this project, but

refining the spatial mesh ameliorates the deficiencies of the SC scheme,

and was observed to improve both the shape and level of the results in

the manner anticipated from this analysis.

* The linear nodal method, recently developed by Walters and O'Dell

[Ref. 131 should also be appropriate for this application.
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E. Conclusions

The conclusions derived from the one-dimensional test cases of

chapter IX have been further supported by the two-dimensional test cases

of this chapter. In respect to xy-geometry, specific conclusions are:

1 - The hybrid Gauss-Christoffel (fixed) polar / equal weight

composite (discrete element) azimuthal angular quadrature is most

efficient and accurate.

2 - The minimum number of Gauss-Christoffel latitudes should be

two, since with only one latitude, the quad-ature is not of high enough

order to meet the diffusion limit. Numerical performance indicates the

importance of this consideration.

3 - The coupling of angular and spatial quadrature by the mechanism

of "steered" element fluxes is highly successful in ameliorating ray

effects, provided at least three (azimuthal) elements are used.

4 - The three-point Gauss-Legendre rule was the most effective

element quadrature tested.

5 - As in chapter IX, the expectation that "the harder the problem,

the more advantageous the discrete elements method" is supported by the

evidence of these two tests.

6 - The discrete elements schemes showed better accuracy and more

consistent convergence toward the benchmark solution then the discrete

ordinates schemes tested.

7 - An evaluation of the full accuracy and cost-effectiveness of

the method will require the use of a spatial quadrature of higher order,

compatible with the higher order of the discrete elements angular

quadrature (in order to take full advantage of the angular-spatial

coupling).
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" XI. Conclusions and Recommendations

The objective of this research has been to develop and demonstrate

"proof of concept" of the discrete elements method of numerical neutral

particle transport. This chapter summarizes the conclusions which were

drawn in the previous chapters and presents recommendations for use of

the discrete elements method and for further study.

A. Conclusions

1. Sound Theoretical Basis

The discrete elements method has a sound basis in numerical

analysis and transport theory. It is not an ad hoc fixup to discrete

ordinates.

2. Practical for Computer Implementation

The discrete elements algorithm retains the essential

- structure of the discrete ordinates method. Its requirements for

computer storage and run time are comparable to SN; in the absence of

vacuum boundaries, L2G,3 uses 22% less storage and run time than S16.

The method could be incorporated within existing production codes.

3. Amelioration of Ray Effects

The method is effective in ameliorating ray effects, but is

more sensitive to quasi-ray effects than discrete ordinates. In this

regard, a low-order LN method behaves like a high order SN method. Use

of high-order spatial quadrature should ameliorate the quasi-ray efZect.

XI-l
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• -" 4. Accuracy

The method is consistently more accurate than S N with the same
sc/sc

quadrature set. For example, G3-L2G 3  is more accurate than

.J.. SCS, . For the vacuum duct problem, LN was the most consistently
2G. 3RN

accurate and convergent (as angular or spatial mesh is refined) method.

5. Cost Effectiveness

4
.J The discrete elements method is the most cost-effective

alternative for some problems. This was demonstrated in slab geometry,

but could not be fully demonstrated in xy-geometry since the spatial

quadrature dominated the remaining errors in the vacuum duct solutions.

The discrete elements method was more cost-effective than conventional

SN for the xy-geometry duct problem. Both theory and testing supported

the conjecture that the more difficult the problem, the more

advantageous the discrete elements method would be, as compared to SN -

6. Element Quadrature Rules

Gauss-Legendre three-point quadrature was consistently the

most effective element quadrature rule tested. It was more accurate and

cost-effective than Simpson's rule, and as accurate as Newton-Cotes

five-point rule, but less expensive.

7. Angular Quadrature for XY-Geometry

The hybrid Gauss-Christoffel (fixed) polar / equal weight

(steered) azimuthal quadrature, LKGL, was consistently more accurate

and less expensive than the equal weight (steered) polar / equal weight

(steered) azimuthal quadrature, L
K,L*

8. Spatial Quadrature

One approach considered was to use the least expensive spatial

quadrature available, the step method, for the auxiliary fluxes (used to
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steer the streaming directions of the element "main" flux) with the

consideration that any accuracy of steering would be better than none,

i.e., SN, and that the cheap auxiliary calculations could then give the

best cost-effectiveness. This approach proved ineffective.

The alternative approach was to use the highest order, most

accurate spatial quadrature for both the auxiliary and main fluxes so

that with really precise steering, the method would produce sufficient

accuracy to pay for the expense of the high order auxiliary

4. calculations. This proved to be the case. In one-dimensional geometry,

• .o lthe linear characteristic method produced the most accuracy and was more

cost-effective than Gauss-Legendre discrete ordinates. In two-

dimensional geometry, the most effective method tested was discrete

- . elements with step characteristic spatial quadrature.

An analysis of the quasi-ray effect errors in the L2G,3SC/Sc

solution to the vacuum duct problem indicated that the use of linear

characteristic spatial quadrature for both the main and auxiliary fluxes

would reduce or eliminate those errors.

B. Recommended General Purpose Discrete Elements Schemes

From the experience gained in testing these methods, the following

quadratures are recommended for general purpose application:

1-D (Slab): L4  2-D (xy): L2 G 3

No three-dimensional codes were used, but based on its two-

dimensional performance and on the expectation that composite quadrature

with angle-space coupling is effective for ill-behaved distributions,

L2, 3 or L3, 3 is recommended for use in 3-D problems. These methods

should all use Gauss-Legendre three-point element quadrature and the

highest order spatial quadrature available.
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C. Recommended Topics for Further Research

This initial study has developed the discrete elements method and

demonstrated some of its potential. Of necessity, many areas of interest

were not pursued. The following topics are recommended as being of most

value in developing the discrete elements method as a useful tool.

1. Evaluation with Higher Order Spatial Quadratures

A cost-effectiveness study of discrete elements in two-

dimensional geometry with linear characteristic or linear nodal spatial

quadrature and a range of test problems could further explore the value

of the method.

2. Extension to Curvilinear Coordinates

Characteristic quadratures have not been applied in

curvilinear coordinates. Step and diamond difference methods have been,

but the former is insufficiently accurate and the latter is

insufficiently smooth for use in discrete elements. Extension of the

method to curvilinear coordinates could be possible using the linear

discontinuous spatial quadrature.

3. Extension to Anisotropic Scatter

Since the zeroth and first angular moments of the flux are

computed and used in the discrete ordinates method, including linearly

anisotropic scatter should be straightforward. Higher order anisotropy

could be included by approximating the higher moments by numerical

quadrature over each element as is done for the first moment, or

alternatively, the full collection of auxiliary fluxes could be used as

a single quadrature set to approximate the higher angular moments.

Research is needed to find the most accurate and least expensive scheme.

XI-4
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4. Higher Order Space-Angle Coupling

The discrete elements method developed here couples the

*V, angular distribution to the spatial quadrature only through the mean
,%5

streaming direction. In a sense, this is the first order member of a

family of discrete element methods, with discrete ordinates as the

zeroth order member. Higher order schemes could possibly be developed by

~j.V treating the flux distribution over each element of angle as a known

polynomial (from the auxiliary fluxes) and integrating that distributionI: across the space cell analytically, as an element characteristic spatial

quadrature rather than the (steered) ordinate characteristic spatial

quadratures used here. Using the symbolic tensor algebra capabilities of

the MACSYMA system, such methods could conceivably be extended to

curvilinear coordinates. Such higher order schemes would abandon some of

the algorithmic simplicity of SN and LN, but could allow the use of

coarse spatial grids and still provide acceptable accuracy. Such a

hybrid of discrete ordinates, finite elements, and space-angle synthesis

might prove highly effective.
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